MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabcbw Structured version   Visualization version   GIF version

Theorem eqabcbw 2805
Description: Version of eqabcb 2872 using implicit substitution, which requires fewer axioms. (Contributed by TM, 24-Jan-2026.)
Hypothesis
Ref Expression
eqabbw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
eqabcbw ({𝑥𝜑} = 𝐴 ↔ ∀𝑦(𝜓𝑦𝐴))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥)

Proof of Theorem eqabcbw
StepHypRef Expression
1 eqabbw.1 . . 3 (𝑥 = 𝑦 → (𝜑𝜓))
21eqabbw 2804 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑦(𝑦𝐴𝜓))
3 eqcom 2738 . 2 ({𝑥𝜑} = 𝐴𝐴 = {𝑥𝜑})
4 bicom 222 . . 3 ((𝜓𝑦𝐴) ↔ (𝑦𝐴𝜓))
54albii 1820 . 2 (∀𝑦(𝜓𝑦𝐴) ↔ ∀𝑦(𝑦𝐴𝜓))
62, 3, 53bitr4i 303 1 ({𝑥𝜑} = 𝐴 ↔ ∀𝑦(𝜓𝑦𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  wcel 2111  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723
This theorem is referenced by:  disj  4400  dm0rn0  5864  tz6.12-2  6809
  Copyright terms: Public domain W3C validator