| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqabcbw | Structured version Visualization version GIF version | ||
| Description: Version of eqabcb 2872 using implicit substitution, which requires fewer axioms. (Contributed by TM, 24-Jan-2026.) |
| Ref | Expression |
|---|---|
| eqabbw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eqabcbw | ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑦(𝜓 ↔ 𝑦 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabbw.1 | . . 3 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | eqabbw 2804 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝜓)) |
| 3 | eqcom 2738 | . 2 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ 𝐴 = {𝑥 ∣ 𝜑}) | |
| 4 | bicom 222 | . . 3 ⊢ ((𝜓 ↔ 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝐴 ↔ 𝜓)) | |
| 5 | 4 | albii 1820 | . 2 ⊢ (∀𝑦(𝜓 ↔ 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝜓)) |
| 6 | 2, 3, 5 | 3bitr4i 303 | 1 ⊢ ({𝑥 ∣ 𝜑} = 𝐴 ↔ ∀𝑦(𝜓 ↔ 𝑦 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 |
| This theorem is referenced by: disj 4400 dm0rn0 5864 tz6.12-2 6809 |
| Copyright terms: Public domain | W3C validator |