MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12-2 Structured version   Visualization version   GIF version

Theorem tz6.12-2 6809
Description: Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by TM, 25-Jan-2026.)
Assertion
Ref Expression
tz6.12-2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹

Proof of Theorem tz6.12-2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fv 6489 . 2 (𝐹𝐴) = (℩𝑦𝐴𝐹𝑦)
2 eu6im 2570 . . 3 (∃𝑧𝑥(𝐴𝐹𝑥𝑥 = 𝑧) → ∃!𝑥 𝐴𝐹𝑥)
3 breq2 5093 . . . . . . 7 (𝑦 = 𝑥 → (𝐴𝐹𝑦𝐴𝐹𝑥))
43eqabcbw 2805 . . . . . 6 ({𝑦𝐴𝐹𝑦} = {𝑧} ↔ ∀𝑥(𝐴𝐹𝑥𝑥 ∈ {𝑧}))
5 velsn 4589 . . . . . . . 8 (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧)
65bibi2i 337 . . . . . . 7 ((𝐴𝐹𝑥𝑥 ∈ {𝑧}) ↔ (𝐴𝐹𝑥𝑥 = 𝑧))
76albii 1820 . . . . . 6 (∀𝑥(𝐴𝐹𝑥𝑥 ∈ {𝑧}) ↔ ∀𝑥(𝐴𝐹𝑥𝑥 = 𝑧))
84, 7bitri 275 . . . . 5 ({𝑦𝐴𝐹𝑦} = {𝑧} ↔ ∀𝑥(𝐴𝐹𝑥𝑥 = 𝑧))
98exbii 1849 . . . 4 (∃𝑧{𝑦𝐴𝐹𝑦} = {𝑧} ↔ ∃𝑧𝑥(𝐴𝐹𝑥𝑥 = 𝑧))
10 iotanul2 6454 . . . 4 (¬ ∃𝑧{𝑦𝐴𝐹𝑦} = {𝑧} → (℩𝑦𝐴𝐹𝑦) = ∅)
119, 10sylnbir 331 . . 3 (¬ ∃𝑧𝑥(𝐴𝐹𝑥𝑥 = 𝑧) → (℩𝑦𝐴𝐹𝑦) = ∅)
122, 11nsyl5 159 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (℩𝑦𝐴𝐹𝑦) = ∅)
131, 12eqtrid 2778 1 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wal 1539   = wceq 1541  wex 1780  wcel 2111  ∃!weu 2563  {cab 2709  c0 4280  {csn 4573   class class class wbr 5089  cio 6435  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-iota 6437  df-fv 6489
This theorem is referenced by:  fvprc  6814  fvprcALT  6815  tz6.12i  6848  ndmfv  6854  nfunsn  6861  funpartfv  35989  setrec2lem1  49793
  Copyright terms: Public domain W3C validator