![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz6.12-2 | Structured version Visualization version GIF version |
Description: Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
tz6.12-2 | ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 6240 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
2 | iotanul 6211 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∅) | |
3 | 1, 2 | syl5eq 2845 | 1 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1525 ∃!weu 2613 ∅c0 4217 class class class wbr 4968 ℩cio 6194 ‘cfv 6232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-v 3442 df-dif 3868 df-in 3872 df-ss 3880 df-nul 4218 df-sn 4479 df-uni 4752 df-iota 6196 df-fv 6240 |
This theorem is referenced by: fvprc 6538 tz6.12i 6571 ndmfv 6575 nfunsn 6582 funpartfv 33017 setrec2lem1 44298 |
Copyright terms: Public domain | W3C validator |