| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz6.12-2 | Structured version Visualization version GIF version | ||
| Description: Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by TM, 25-Jan-2026.) |
| Ref | Expression |
|---|---|
| tz6.12-2 | ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fv 6489 | . 2 ⊢ (𝐹‘𝐴) = (℩𝑦𝐴𝐹𝑦) | |
| 2 | eu6im 2570 | . . 3 ⊢ (∃𝑧∀𝑥(𝐴𝐹𝑥 ↔ 𝑥 = 𝑧) → ∃!𝑥 𝐴𝐹𝑥) | |
| 3 | breq2 5093 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → (𝐴𝐹𝑦 ↔ 𝐴𝐹𝑥)) | |
| 4 | 3 | eqabcbw 2805 | . . . . . 6 ⊢ ({𝑦 ∣ 𝐴𝐹𝑦} = {𝑧} ↔ ∀𝑥(𝐴𝐹𝑥 ↔ 𝑥 ∈ {𝑧})) |
| 5 | velsn 4589 | . . . . . . . 8 ⊢ (𝑥 ∈ {𝑧} ↔ 𝑥 = 𝑧) | |
| 6 | 5 | bibi2i 337 | . . . . . . 7 ⊢ ((𝐴𝐹𝑥 ↔ 𝑥 ∈ {𝑧}) ↔ (𝐴𝐹𝑥 ↔ 𝑥 = 𝑧)) |
| 7 | 6 | albii 1820 | . . . . . 6 ⊢ (∀𝑥(𝐴𝐹𝑥 ↔ 𝑥 ∈ {𝑧}) ↔ ∀𝑥(𝐴𝐹𝑥 ↔ 𝑥 = 𝑧)) |
| 8 | 4, 7 | bitri 275 | . . . . 5 ⊢ ({𝑦 ∣ 𝐴𝐹𝑦} = {𝑧} ↔ ∀𝑥(𝐴𝐹𝑥 ↔ 𝑥 = 𝑧)) |
| 9 | 8 | exbii 1849 | . . . 4 ⊢ (∃𝑧{𝑦 ∣ 𝐴𝐹𝑦} = {𝑧} ↔ ∃𝑧∀𝑥(𝐴𝐹𝑥 ↔ 𝑥 = 𝑧)) |
| 10 | iotanul2 6454 | . . . 4 ⊢ (¬ ∃𝑧{𝑦 ∣ 𝐴𝐹𝑦} = {𝑧} → (℩𝑦𝐴𝐹𝑦) = ∅) | |
| 11 | 9, 10 | sylnbir 331 | . . 3 ⊢ (¬ ∃𝑧∀𝑥(𝐴𝐹𝑥 ↔ 𝑥 = 𝑧) → (℩𝑦𝐴𝐹𝑦) = ∅) |
| 12 | 2, 11 | nsyl5 159 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (℩𝑦𝐴𝐹𝑦) = ∅) |
| 13 | 1, 12 | eqtrid 2778 | 1 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 {cab 2709 ∅c0 4280 {csn 4573 class class class wbr 5089 ℩cio 6435 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 |
| This theorem is referenced by: fvprc 6814 fvprcALT 6815 tz6.12i 6848 ndmfv 6854 nfunsn 6861 funpartfv 35989 setrec2lem1 49793 |
| Copyright terms: Public domain | W3C validator |