MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12-2 Structured version   Visualization version   GIF version

Theorem tz6.12-2 6869
Description: Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
tz6.12-2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz6.12-2
StepHypRef Expression
1 df-fv 6541 . 2 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
2 iotanul 6511 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (℩𝑥𝐴𝐹𝑥) = ∅)
31, 2eqtrid 2776 1 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  ∃!weu 2554  c0 4314   class class class wbr 5138  cio 6483  cfv 6533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-v 3468  df-dif 3943  df-in 3947  df-ss 3957  df-nul 4315  df-sn 4621  df-uni 4900  df-iota 6485  df-fv 6541
This theorem is referenced by:  fvprc  6873  fvprcALT  6874  tz6.12i  6909  ndmfv  6916  nfunsn  6923  funpartfv  35378  setrec2lem1  47892
  Copyright terms: Public domain W3C validator