Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > breq1 | Structured version Visualization version GIF version |
Description: Equality theorem for a binary relation. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
breq1 | ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeq1 4805 | . . 3 ⊢ (𝐴 = 𝐵 → 〈𝐴, 𝐶〉 = 〈𝐵, 𝐶〉) | |
2 | 1 | eleq1d 2824 | . 2 ⊢ (𝐴 = 𝐵 → (〈𝐴, 𝐶〉 ∈ 𝑅 ↔ 〈𝐵, 𝐶〉 ∈ 𝑅)) |
3 | df-br 5076 | . 2 ⊢ (𝐴𝑅𝐶 ↔ 〈𝐴, 𝐶〉 ∈ 𝑅) | |
4 | df-br 5076 | . 2 ⊢ (𝐵𝑅𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝑅) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
Copyright terms: Public domain | W3C validator |