MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeuel Structured version   Visualization version   GIF version

Theorem eqeuel 4315
Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
eqeuel ((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem eqeuel
StepHypRef Expression
1 n0 4303 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
21biimpi 216 . . 3 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
32anim1i 615 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
4 eleq1w 2814 . . 3 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
54eu4 2610 . 2 (∃!𝑥 𝑥𝐴 ↔ (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
63, 5sylibr 234 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1539  wex 1780  wcel 2111  ∃!weu 2563  wne 2928  c0 4283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-dif 3905  df-nul 4284
This theorem is referenced by:  frgr2wwlk1  30307
  Copyright terms: Public domain W3C validator