| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeuel | Structured version Visualization version GIF version | ||
| Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| eqeuel | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4303 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴) |
| 3 | 2 | anim1i 615 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → (∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦))) |
| 4 | eleq1w 2814 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 5 | 4 | eu4 2610 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦))) |
| 6 | 3, 5 | sylibr 234 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 ∃!weu 2563 ≠ wne 2928 ∅c0 4283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-dif 3905 df-nul 4284 |
| This theorem is referenced by: frgr2wwlk1 30307 |
| Copyright terms: Public domain | W3C validator |