MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeuel Structured version   Visualization version   GIF version

Theorem eqeuel 4325
Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
eqeuel ((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem eqeuel
StepHypRef Expression
1 n0 4313 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
21biimpi 218 . . 3 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
32anim1i 616 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
4 eleq1w 2898 . . 3 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
54eu4 2698 . 2 (∃!𝑥 𝑥𝐴 ↔ (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
63, 5sylibr 236 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1534  wex 1779  wcel 2113  ∃!weu 2652  wne 3019  c0 4294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-dif 3942  df-nul 4295
This theorem is referenced by:  frgr2wwlk1  28111
  Copyright terms: Public domain W3C validator