| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeuel | Structured version Visualization version GIF version | ||
| Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.) |
| Ref | Expression |
|---|---|
| eqeuel | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4333 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | 1 | biimpi 216 | . . 3 ⊢ (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴) |
| 3 | 2 | anim1i 615 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → (∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦))) |
| 4 | eleq1w 2816 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 5 | 4 | eu4 2613 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦))) |
| 6 | 3, 5 | sylibr 234 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 ∃wex 1778 ∈ wcel 2107 ∃!weu 2566 ≠ wne 2931 ∅c0 4313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-dif 3934 df-nul 4314 |
| This theorem is referenced by: frgr2wwlk1 30276 |
| Copyright terms: Public domain | W3C validator |