Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeuel | Structured version Visualization version GIF version |
Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.) |
Ref | Expression |
---|---|
eqeuel | ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4280 | . . . 4 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | 1 | biimpi 215 | . . 3 ⊢ (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴) |
3 | 2 | anim1i 615 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → (∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦))) |
4 | eleq1w 2821 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
5 | 4 | eu4 2617 | . 2 ⊢ (∃!𝑥 𝑥 ∈ 𝐴 ↔ (∃𝑥 𝑥 ∈ 𝐴 ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦))) |
6 | 3, 5 | sylibr 233 | 1 ⊢ ((𝐴 ≠ ∅ ∧ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ∃!weu 2568 ≠ wne 2943 ∅c0 4256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-dif 3890 df-nul 4257 |
This theorem is referenced by: frgr2wwlk1 28693 |
Copyright terms: Public domain | W3C validator |