MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqeuel Structured version   Visualization version   GIF version

Theorem eqeuel 4330
Description: A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.)
Assertion
Ref Expression
eqeuel ((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem eqeuel
StepHypRef Expression
1 n0 4318 . . . 4 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
21biimpi 216 . . 3 (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴)
32anim1i 615 . 2 ((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
4 eleq1w 2812 . . 3 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
54eu4 2609 . 2 (∃!𝑥 𝑥𝐴 ↔ (∃𝑥 𝑥𝐴 ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)))
63, 5sylibr 234 1 ((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538  wex 1779  wcel 2109  ∃!weu 2562  wne 2926  c0 4298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-dif 3919  df-nul 4299
This theorem is referenced by:  frgr2wwlk1  30264
  Copyright terms: Public domain W3C validator