MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlk1 Structured version   Visualization version   GIF version

Theorem frgr2wwlk1 28108
Description: In a friendship graph, there is exactly one walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypothesis
Ref Expression
frgr2wwlkeu.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgr2wwlk1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1)

Proof of Theorem frgr2wwlk1
Dummy variables 𝑐 𝑑 𝑡 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgr2wwlkeu.v . . . 4 𝑉 = (Vtx‘𝐺)
21frgr2wwlkn0 28107 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅)
31elwwlks2ons3 27734 . . . . . 6 (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
41elwwlks2ons3 27734 . . . . . 6 (𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
53, 4anbi12i 628 . . . . 5 ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))
61frgr2wwlkeu 28106 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
7 s3eq2 14232 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑦𝐵”⟩)
87eleq1d 2897 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
98reu4 3722 . . . . . . . . . . . 12 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (∃𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)))
10 s3eq2 14232 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑑 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
1110eleq1d 2897 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑑 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1211anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑑 → ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))
13 equequ1 2032 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑑 → (𝑥 = 𝑦𝑑 = 𝑦))
1412, 13imbi12d 347 . . . . . . . . . . . . . . 15 (𝑥 = 𝑑 → (((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) ↔ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑦)))
15 s3eq2 14232 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑐 → ⟨“𝐴𝑦𝐵”⟩ = ⟨“𝐴𝑐𝐵”⟩)
1615eleq1d 2897 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑐 → (⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1716anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑐 → ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))
18 equequ2 2033 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑐 → (𝑑 = 𝑦𝑑 = 𝑐))
1917, 18imbi12d 347 . . . . . . . . . . . . . . 15 (𝑦 = 𝑐 → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑦) ↔ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)))
2014, 19rspc2va 3634 . . . . . . . . . . . . . 14 (((𝑑𝑉𝑐𝑉) ∧ ∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐))
21 pm3.35 801 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) → 𝑑 = 𝑐)
22 s3eq2 14232 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = 𝑑 → ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
2322equcoms 2027 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑐 → ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
2423adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
25 eqeq12 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → (𝑡 = 𝑤 ↔ ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩))
2625adantl 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → (𝑡 = 𝑤 ↔ ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩))
2724, 26mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → 𝑡 = 𝑤)
2827equcomd 2026 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → 𝑤 = 𝑡)
2928ex 415 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑐 → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → 𝑤 = 𝑡))
3021, 29syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → 𝑤 = 𝑡))
3130ex 415 . . . . . . . . . . . . . . . . . . . . 21 ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → 𝑤 = 𝑡)))
3231com23 86 . . . . . . . . . . . . . . . . . . . 20 ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))
3332exp4b 433 . . . . . . . . . . . . . . . . . . 19 (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑡 = ⟨“𝐴𝑐𝐵”⟩ → (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))))
3433com13 88 . . . . . . . . . . . . . . . . . 18 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))))
3534imp 409 . . . . . . . . . . . . . . . . 17 ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))))
3635com13 88 . . . . . . . . . . . . . . . 16 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))))
3736imp 409 . . . . . . . . . . . . . . 15 ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))
3837com13 88 . . . . . . . . . . . . . 14 (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
3920, 38syl 17 . . . . . . . . . . . . 13 (((𝑑𝑉𝑐𝑉) ∧ ∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4039expcom 416 . . . . . . . . . . . 12 (∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) → ((𝑑𝑉𝑐𝑉) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))))
419, 40simplbiim 507 . . . . . . . . . . 11 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑑𝑉𝑐𝑉) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))))
4241impl 458 . . . . . . . . . 10 (((∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑𝑉) ∧ 𝑐𝑉) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4342rexlimdva 3284 . . . . . . . . 9 ((∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑𝑉) → (∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4443com23 86 . . . . . . . 8 ((∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑𝑉) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4544rexlimdva 3284 . . . . . . 7 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4645impd 413 . . . . . 6 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → 𝑤 = 𝑡))
476, 46syl 17 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → 𝑤 = 𝑡))
485, 47syl5bi 244 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))
4948alrimivv 1929 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∀𝑤𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))
50 eqeuel 4322 . . 3 (((𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅ ∧ ∀𝑤𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
512, 49, 50syl2anc 586 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
52 ovex 7189 . . 3 (𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V
53 euhash1 13782 . . 3 ((𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V → ((♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
5452, 53mp1i 13 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
5551, 54mpbird 259 1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  ∃!weu 2653  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  Vcvv 3494  c0 4291  cfv 6355  (class class class)co 7156  1c1 10538  2c2 11693  chash 13691  ⟨“cs3 14204  Vtxcvtx 26781   WWalksNOn cwwlksnon 27605   FriendGraph cfrgr 28037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-ifp 1058  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-fzo 13035  df-hash 13692  df-word 13863  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-edg 26833  df-uhgr 26843  df-upgr 26867  df-umgr 26868  df-usgr 26936  df-wlks 27381  df-wwlks 27608  df-wwlksn 27609  df-wwlksnon 27610  df-frgr 28038
This theorem is referenced by:  frgr2wsp1  28109
  Copyright terms: Public domain W3C validator