Step | Hyp | Ref
| Expression |
1 | | frgr2wwlkeu.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
2 | 1 | frgr2wwlkn0 28593 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅) |
3 | 1 | elwwlks2ons3 28221 |
. . . . . 6
⊢ (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
4 | 1 | elwwlks2ons3 28221 |
. . . . . 6
⊢ (𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
5 | 3, 4 | anbi12i 626 |
. . . . 5
⊢ ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
6 | 1 | frgr2wwlkeu 28592 |
. . . . . 6
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑥 ∈ 𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
7 | | s3eq2 14511 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → 〈“𝐴𝑥𝐵”〉 = 〈“𝐴𝑦𝐵”〉) |
8 | 7 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → (〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
9 | 8 | reu4 3661 |
. . . . . . . . . . . 12
⊢
(∃!𝑥 ∈
𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (∃𝑥 ∈ 𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦))) |
10 | | s3eq2 14511 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑑 → 〈“𝐴𝑥𝐵”〉 = 〈“𝐴𝑑𝐵”〉) |
11 | 10 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑑 → (〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
12 | 11 | anbi1d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑑 → ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
13 | | equequ1 2029 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑑 → (𝑥 = 𝑦 ↔ 𝑑 = 𝑦)) |
14 | 12, 13 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑑 → (((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) ↔ ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑦))) |
15 | | s3eq2 14511 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = 𝑐 → 〈“𝐴𝑦𝐵”〉 = 〈“𝐴𝑐𝐵”〉) |
16 | 15 | eleq1d 2823 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = 𝑐 → (〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
17 | 16 | anbi2d 628 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑐 → ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))) |
18 | | equequ2 2030 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = 𝑐 → (𝑑 = 𝑦 ↔ 𝑑 = 𝑐)) |
19 | 17, 18 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑐 → (((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑦) ↔ ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐))) |
20 | 14, 19 | rspc2va 3563 |
. . . . . . . . . . . . . 14
⊢ (((𝑑 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) |
21 | | pm3.35 799 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) → 𝑑 = 𝑐) |
22 | | s3eq2 14511 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑐 = 𝑑 → 〈“𝐴𝑐𝐵”〉 = 〈“𝐴𝑑𝐵”〉) |
23 | 22 | equcoms 2024 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑑 = 𝑐 → 〈“𝐴𝑐𝐵”〉 = 〈“𝐴𝑑𝐵”〉) |
24 | 23 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑑 = 𝑐 ∧ (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 𝑤 = 〈“𝐴𝑑𝐵”〉)) → 〈“𝐴𝑐𝐵”〉 = 〈“𝐴𝑑𝐵”〉) |
25 | | eqeq12 2755 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 𝑤 = 〈“𝐴𝑑𝐵”〉) → (𝑡 = 𝑤 ↔ 〈“𝐴𝑐𝐵”〉 = 〈“𝐴𝑑𝐵”〉)) |
26 | 25 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑑 = 𝑐 ∧ (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 𝑤 = 〈“𝐴𝑑𝐵”〉)) → (𝑡 = 𝑤 ↔ 〈“𝐴𝑐𝐵”〉 = 〈“𝐴𝑑𝐵”〉)) |
27 | 24, 26 | mpbird 256 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑑 = 𝑐 ∧ (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 𝑤 = 〈“𝐴𝑑𝐵”〉)) → 𝑡 = 𝑤) |
28 | 27 | equcomd 2023 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑑 = 𝑐 ∧ (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 𝑤 = 〈“𝐴𝑑𝐵”〉)) → 𝑤 = 𝑡) |
29 | 28 | ex 412 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑑 = 𝑐 → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 𝑤 = 〈“𝐴𝑑𝐵”〉) → 𝑤 = 𝑡)) |
30 | 21, 29 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 𝑤 = 〈“𝐴𝑑𝐵”〉) → 𝑤 = 𝑡)) |
31 | 30 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 𝑤 = 〈“𝐴𝑑𝐵”〉) → 𝑤 = 𝑡))) |
32 | 31 | com23 86 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 𝑤 = 〈“𝐴𝑑𝐵”〉) → (((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))) |
33 | 32 | exp4b 430 |
. . . . . . . . . . . . . . . . . . 19
⊢
(〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑡 = 〈“𝐴𝑐𝐵”〉 → (𝑤 = 〈“𝐴𝑑𝐵”〉 → (((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))))) |
34 | 33 | com13 88 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 〈“𝐴𝑐𝐵”〉 → (〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑤 = 〈“𝐴𝑑𝐵”〉 → (((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))))) |
35 | 34 | imp 406 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑤 = 〈“𝐴𝑑𝐵”〉 → (((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))) |
36 | 35 | com13 88 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 〈“𝐴𝑑𝐵”〉 → (〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))) |
37 | 36 | imp 406 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))) |
38 | 37 | com13 88 |
. . . . . . . . . . . . . 14
⊢
(((〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
39 | 20, 38 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝑑 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) ∧ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
40 | 39 | expcom 413 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝑉 ∀𝑦 ∈ 𝑉 ((〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 〈“𝐴𝑦𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) → ((𝑑 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
41 | 9, 40 | simplbiim 504 |
. . . . . . . . . . 11
⊢
(∃!𝑥 ∈
𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑑 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))) |
42 | 41 | impl 455 |
. . . . . . . . . 10
⊢
(((∃!𝑥 ∈
𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑 ∈ 𝑉) ∧ 𝑐 ∈ 𝑉) → ((𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
43 | 42 | rexlimdva 3212 |
. . . . . . . . 9
⊢
((∃!𝑥 ∈
𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑 ∈ 𝑉) → (∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
44 | 43 | com23 86 |
. . . . . . . 8
⊢
((∃!𝑥 ∈
𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑 ∈ 𝑉) → ((𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
45 | 44 | rexlimdva 3212 |
. . . . . . 7
⊢
(∃!𝑥 ∈
𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))) |
46 | 45 | impd 410 |
. . . . . 6
⊢
(∃!𝑥 ∈
𝑉 〈“𝐴𝑥𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → 𝑤 = 𝑡)) |
47 | 6, 46 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((∃𝑑 ∈ 𝑉 (𝑤 = 〈“𝐴𝑑𝐵”〉 ∧ 〈“𝐴𝑑𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐 ∈ 𝑉 (𝑡 = 〈“𝐴𝑐𝐵”〉 ∧ 〈“𝐴𝑐𝐵”〉 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → 𝑤 = 𝑡)) |
48 | 5, 47 | syl5bi 241 |
. . . 4
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)) |
49 | 48 | alrimivv 1932 |
. . 3
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∀𝑤∀𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)) |
50 | | eqeuel 4293 |
. . 3
⊢ (((𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅ ∧ ∀𝑤∀𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
51 | 2, 49, 50 | syl2anc 583 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) |
52 | | ovex 7288 |
. . 3
⊢ (𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V |
53 | | euhash1 14063 |
. . 3
⊢ ((𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V → ((♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
54 | 52, 53 | mp1i 13 |
. 2
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) |
55 | 51, 54 | mpbird 256 |
1
⊢ ((𝐺 ∈ FriendGraph ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1) |