MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgr2wwlk1 Structured version   Visualization version   GIF version

Theorem frgr2wwlk1 29620
Description: In a friendship graph, there is exactly one walk of length 2 between two different vertices. (Contributed by Alexander van der Vekens, 19-Feb-2018.) (Revised by AV, 13-May-2021.) (Proof shortened by AV, 16-Mar-2022.)
Hypothesis
Ref Expression
frgr2wwlkeu.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgr2wwlk1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1)

Proof of Theorem frgr2wwlk1
Dummy variables 𝑐 𝑑 𝑡 𝑤 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frgr2wwlkeu.v . . . 4 𝑉 = (Vtx‘𝐺)
21frgr2wwlkn0 29619 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅)
31elwwlks2ons3 29247 . . . . . 6 (𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
41elwwlks2ons3 29247 . . . . . 6 (𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
53, 4anbi12i 627 . . . . 5 ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))
61frgr2wwlkeu 29618 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
7 s3eq2 14823 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑦𝐵”⟩)
87eleq1d 2818 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
98reu4 3727 . . . . . . . . . . . 12 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ (∃𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)))
10 s3eq2 14823 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑑 → ⟨“𝐴𝑥𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
1110eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑑 → (⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1211anbi1d 630 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑑 → ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))
13 equequ1 2028 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑑 → (𝑥 = 𝑦𝑑 = 𝑦))
1412, 13imbi12d 344 . . . . . . . . . . . . . . 15 (𝑥 = 𝑑 → (((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) ↔ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑦)))
15 s3eq2 14823 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑐 → ⟨“𝐴𝑦𝐵”⟩ = ⟨“𝐴𝑐𝐵”⟩)
1615eleq1d 2818 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑐 → (⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ↔ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
1716anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑐 → ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ↔ (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))))
18 equequ2 2029 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑐 → (𝑑 = 𝑦𝑑 = 𝑐))
1917, 18imbi12d 344 . . . . . . . . . . . . . . 15 (𝑦 = 𝑐 → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑦) ↔ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)))
2014, 19rspc2va 3623 . . . . . . . . . . . . . 14 (((𝑑𝑉𝑐𝑉) ∧ ∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐))
21 pm3.35 801 . . . . . . . . . . . . . . . . . . . . . . 23 (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) → 𝑑 = 𝑐)
22 s3eq2 14823 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑐 = 𝑑 → ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
2322equcoms 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑑 = 𝑐 → ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
2423adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩)
25 eqeq12 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → (𝑡 = 𝑤 ↔ ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩))
2625adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → (𝑡 = 𝑤 ↔ ⟨“𝐴𝑐𝐵”⟩ = ⟨“𝐴𝑑𝐵”⟩))
2724, 26mpbird 256 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → 𝑡 = 𝑤)
2827equcomd 2022 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑑 = 𝑐 ∧ (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩)) → 𝑤 = 𝑡)
2928ex 413 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑑 = 𝑐 → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → 𝑤 = 𝑡))
3021, 29syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → 𝑤 = 𝑡))
3130ex 413 . . . . . . . . . . . . . . . . . . . . 21 ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → 𝑤 = 𝑡)))
3231com23 86 . . . . . . . . . . . . . . . . . . . 20 ((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ 𝑤 = ⟨“𝐴𝑑𝐵”⟩) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))
3332exp4b 431 . . . . . . . . . . . . . . . . . . 19 (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑡 = ⟨“𝐴𝑐𝐵”⟩ → (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))))
3433com13 88 . . . . . . . . . . . . . . . . . 18 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ → (⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))))
3534imp 407 . . . . . . . . . . . . . . . . 17 ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))))
3635com13 88 . . . . . . . . . . . . . . . 16 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ → (⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡))))
3736imp 407 . . . . . . . . . . . . . . 15 ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → 𝑤 = 𝑡)))
3837com13 88 . . . . . . . . . . . . . 14 (((⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑑 = 𝑐) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
3920, 38syl 17 . . . . . . . . . . . . 13 (((𝑑𝑉𝑐𝑉) ∧ ∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦)) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4039expcom 414 . . . . . . . . . . . 12 (∀𝑥𝑉𝑦𝑉 ((⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ ⟨“𝐴𝑦𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑥 = 𝑦) → ((𝑑𝑉𝑐𝑉) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))))
419, 40simplbiim 505 . . . . . . . . . . 11 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((𝑑𝑉𝑐𝑉) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))))
4241impl 456 . . . . . . . . . 10 (((∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑𝑉) ∧ 𝑐𝑉) → ((𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4342rexlimdva 3155 . . . . . . . . 9 ((∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑𝑉) → (∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4443com23 86 . . . . . . . 8 ((∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑑𝑉) → ((𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4544rexlimdva 3155 . . . . . . 7 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → (∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → (∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)))
4645impd 411 . . . . . 6 (∃!𝑥𝑉 ⟨“𝐴𝑥𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) → ((∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → 𝑤 = 𝑡))
476, 46syl 17 . . . . 5 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((∃𝑑𝑉 (𝑤 = ⟨“𝐴𝑑𝐵”⟩ ∧ ⟨“𝐴𝑑𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) ∧ ∃𝑐𝑉 (𝑡 = ⟨“𝐴𝑐𝐵”⟩ ∧ ⟨“𝐴𝑐𝐵”⟩ ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))) → 𝑤 = 𝑡))
485, 47biimtrid 241 . . . 4 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))
4948alrimivv 1931 . . 3 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∀𝑤𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡))
50 eqeuel 4362 . . 3 (((𝐴(2 WWalksNOn 𝐺)𝐵) ≠ ∅ ∧ ∀𝑤𝑡((𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵) ∧ 𝑡 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)) → 𝑤 = 𝑡)) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
512, 49, 50syl2anc 584 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵))
52 ovex 7444 . . 3 (𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V
53 euhash1 14382 . . 3 ((𝐴(2 WWalksNOn 𝐺)𝐵) ∈ V → ((♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
5452, 53mp1i 13 . 2 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → ((♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1 ↔ ∃!𝑤 𝑤 ∈ (𝐴(2 WWalksNOn 𝐺)𝐵)))
5551, 54mpbird 256 1 ((𝐺 ∈ FriendGraph ∧ (𝐴𝑉𝐵𝑉) ∧ 𝐴𝐵) → (♯‘(𝐴(2 WWalksNOn 𝐺)𝐵)) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  ∃!weu 2562  wne 2940  wral 3061  wrex 3070  ∃!wreu 3374  Vcvv 3474  c0 4322  cfv 6543  (class class class)co 7411  1c1 11113  2c2 12269  chash 14292  ⟨“cs3 14795  Vtxcvtx 28294   WWalksNOn cwwlksnon 29119   FriendGraph cfrgr 29549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-ac2 10460  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ifp 1062  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-2o 8469  df-oadd 8472  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-ac 10113  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-3 12278  df-n0 12475  df-xnn0 12547  df-z 12561  df-uz 12825  df-fz 13487  df-fzo 13630  df-hash 14293  df-word 14467  df-concat 14523  df-s1 14548  df-s2 14801  df-s3 14802  df-edg 28346  df-uhgr 28356  df-upgr 28380  df-umgr 28381  df-usgr 28449  df-wlks 28894  df-wwlks 29122  df-wwlksn 29123  df-wwlksnon 29124  df-frgr 29550
This theorem is referenced by:  frgr2wsp1  29621
  Copyright terms: Public domain W3C validator