MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1eqcocnv Structured version   Visualization version   GIF version

Theorem f1eqcocnv 6927
Description: Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
f1eqcocnv ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))

Proof of Theorem f1eqcocnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1cocnv1 6517 . . . 4 (𝐹:𝐴1-1𝐵 → (𝐹𝐹) = ( I ↾ 𝐴))
2 coeq2 5620 . . . . 5 (𝐹 = 𝐺 → (𝐹𝐹) = (𝐹𝐺))
32eqeq1d 2797 . . . 4 (𝐹 = 𝐺 → ((𝐹𝐹) = ( I ↾ 𝐴) ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
41, 3syl5ibcom 246 . . 3 (𝐹:𝐴1-1𝐵 → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐴)))
54adantr 481 . 2 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 → (𝐹𝐺) = ( I ↾ 𝐴)))
6 f1fn 6449 . . . . . . 7 (𝐺:𝐴1-1𝐵𝐺 Fn 𝐴)
76adantl 482 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → 𝐺 Fn 𝐴)
87adantr 481 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐺 Fn 𝐴)
9 f1fn 6449 . . . . . . 7 (𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
109adantr 481 . . . . . 6 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → 𝐹 Fn 𝐴)
1110adantr 481 . . . . 5 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐹 Fn 𝐴)
12 equid 1996 . . . . . . . . . 10 𝑥 = 𝑥
13 resieq 5750 . . . . . . . . . 10 ((𝑥𝐴𝑥𝐴) → (𝑥( I ↾ 𝐴)𝑥𝑥 = 𝑥))
1412, 13mpbiri 259 . . . . . . . . 9 ((𝑥𝐴𝑥𝐴) → 𝑥( I ↾ 𝐴)𝑥)
1514anidms 567 . . . . . . . 8 (𝑥𝐴𝑥( I ↾ 𝐴)𝑥)
1615adantl 482 . . . . . . 7 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → 𝑥( I ↾ 𝐴)𝑥)
17 breq 4968 . . . . . . . 8 ((𝐹𝐺) = ( I ↾ 𝐴) → (𝑥(𝐹𝐺)𝑥𝑥( I ↾ 𝐴)𝑥))
1817ad2antlr 723 . . . . . . 7 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥𝑥( I ↾ 𝐴)𝑥))
1916, 18mpbird 258 . . . . . 6 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → 𝑥(𝐹𝐺)𝑥)
20 fnfun 6328 . . . . . . . . . . . . . . 15 (𝐺 Fn 𝐴 → Fun 𝐺)
217, 20syl 17 . . . . . . . . . . . . . 14 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → Fun 𝐺)
22 fndm 6330 . . . . . . . . . . . . . . . . 17 (𝐺 Fn 𝐴 → dom 𝐺 = 𝐴)
237, 22syl 17 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → dom 𝐺 = 𝐴)
2423eleq2d 2868 . . . . . . . . . . . . . . 15 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝑥 ∈ dom 𝐺𝑥𝐴))
2524biimpar 478 . . . . . . . . . . . . . 14 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → 𝑥 ∈ dom 𝐺)
26 funopfvb 6594 . . . . . . . . . . . . . 14 ((Fun 𝐺𝑥 ∈ dom 𝐺) → ((𝐺𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
2721, 25, 26syl2an2r 681 . . . . . . . . . . . . 13 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐺𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺))
2827bicomd 224 . . . . . . . . . . . 12 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (⟨𝑥, 𝑦⟩ ∈ 𝐺 ↔ (𝐺𝑥) = 𝑦))
29 df-br 4967 . . . . . . . . . . . 12 (𝑥𝐺𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐺)
30 eqcom 2802 . . . . . . . . . . . 12 (𝑦 = (𝐺𝑥) ↔ (𝐺𝑥) = 𝑦)
3128, 29, 303bitr4g 315 . . . . . . . . . . 11 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥𝐺𝑦𝑦 = (𝐺𝑥)))
3231biimpd 230 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥𝐺𝑦𝑦 = (𝐺𝑥)))
33 fnfun 6328 . . . . . . . . . . . . . . 15 (𝐹 Fn 𝐴 → Fun 𝐹)
3410, 33syl 17 . . . . . . . . . . . . . 14 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → Fun 𝐹)
35 fndm 6330 . . . . . . . . . . . . . . . . 17 (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴)
3610, 35syl 17 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
3736eleq2d 2868 . . . . . . . . . . . . . . 15 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝑥 ∈ dom 𝐹𝑥𝐴))
3837biimpar 478 . . . . . . . . . . . . . 14 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → 𝑥 ∈ dom 𝐹)
39 funopfvb 6594 . . . . . . . . . . . . . 14 ((Fun 𝐹𝑥 ∈ dom 𝐹) → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
4034, 38, 39syl2an2r 681 . . . . . . . . . . . . 13 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
41 df-br 4967 . . . . . . . . . . . . 13 (𝑥𝐹𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
4240, 41syl6rbbr 291 . . . . . . . . . . . 12 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥𝐹𝑦 ↔ (𝐹𝑥) = 𝑦))
43 vex 3440 . . . . . . . . . . . . 13 𝑦 ∈ V
44 vex 3440 . . . . . . . . . . . . 13 𝑥 ∈ V
4543, 44brcnv 5644 . . . . . . . . . . . 12 (𝑦𝐹𝑥𝑥𝐹𝑦)
46 eqcom 2802 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) ↔ (𝐹𝑥) = 𝑦)
4742, 45, 463bitr4g 315 . . . . . . . . . . 11 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑦𝐹𝑥𝑦 = (𝐹𝑥)))
4847biimpd 230 . . . . . . . . . 10 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑦𝐹𝑥𝑦 = (𝐹𝑥)))
4932, 48anim12d 608 . . . . . . . . 9 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → ((𝑥𝐺𝑦𝑦𝐹𝑥) → (𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
5049eximdv 1895 . . . . . . . 8 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (∃𝑦(𝑥𝐺𝑦𝑦𝐹𝑥) → ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥))))
5144, 44brco 5632 . . . . . . . 8 (𝑥(𝐹𝐺)𝑥 ↔ ∃𝑦(𝑥𝐺𝑦𝑦𝐹𝑥))
52 fvex 6556 . . . . . . . . 9 (𝐺𝑥) ∈ V
5352eqvinc 3581 . . . . . . . 8 ((𝐺𝑥) = (𝐹𝑥) ↔ ∃𝑦(𝑦 = (𝐺𝑥) ∧ 𝑦 = (𝐹𝑥)))
5450, 51, 533imtr4g 297 . . . . . . 7 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥 → (𝐺𝑥) = (𝐹𝑥)))
5554adantlr 711 . . . . . 6 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → (𝑥(𝐹𝐺)𝑥 → (𝐺𝑥) = (𝐹𝑥)))
5619, 55mpd 15 . . . . 5 ((((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) ∧ 𝑥𝐴) → (𝐺𝑥) = (𝐹𝑥))
578, 11, 56eqfnfvd 6675 . . . 4 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐺 = 𝐹)
5857eqcomd 2801 . . 3 (((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) ∧ (𝐹𝐺) = ( I ↾ 𝐴)) → 𝐹 = 𝐺)
5958ex 413 . 2 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → ((𝐹𝐺) = ( I ↾ 𝐴) → 𝐹 = 𝐺))
605, 59impbid 213 1 ((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wex 1761  wcel 2081  cop 4482   class class class wbr 4966   I cid 5352  ccnv 5447  dom cdm 5448  cres 5450  ccom 5452  Fun wfun 6224   Fn wfn 6225  1-1wf1 6227  cfv 6230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rex 3111  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-nul 4216  df-if 4386  df-sn 4477  df-pr 4479  df-op 4483  df-uni 4750  df-br 4967  df-opab 5029  df-mpt 5046  df-id 5353  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238
This theorem is referenced by:  weisoeq  6976
  Copyright terms: Public domain W3C validator