Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg4 Structured version   Visualization version   GIF version

Theorem dfrdg4 34180
Description: A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfrdg4 rec(𝐹, 𝐴) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))))

Proof of Theorem dfrdg4
Dummy variables 𝑎 𝑏 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrdg3 33678 . 2 rec(𝐹, 𝐴) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
2 an12 641 . . . . . . . 8 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
3 df-fn 6421 . . . . . . . . . 10 (𝑓 Fn 𝑥 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝑥))
4 ancom 460 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 = 𝑥) ↔ (dom 𝑓 = 𝑥 ∧ Fun 𝑓))
5 eqcom 2745 . . . . . . . . . . 11 (dom 𝑓 = 𝑥𝑥 = dom 𝑓)
65anbi1i 623 . . . . . . . . . 10 ((dom 𝑓 = 𝑥 ∧ Fun 𝑓) ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
73, 4, 63bitri 296 . . . . . . . . 9 (𝑓 Fn 𝑥 ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
87anbi1i 623 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ ((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
9 anass 468 . . . . . . . 8 (((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
102, 8, 93bitri 296 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
1110exbii 1851 . . . . . 6 (∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ ∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
12 vex 3426 . . . . . . . 8 𝑓 ∈ V
1312dmex 7732 . . . . . . 7 dom 𝑓 ∈ V
14 eleq1 2826 . . . . . . . . 9 (𝑥 = dom 𝑓 → (𝑥 ∈ On ↔ dom 𝑓 ∈ On))
15 raleq 3333 . . . . . . . . 9 (𝑥 = dom 𝑓 → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1614, 15anbi12d 630 . . . . . . . 8 (𝑥 = dom 𝑓 → ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
1716anbi2d 628 . . . . . . 7 (𝑥 = dom 𝑓 → ((Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
1813, 17ceqsexv 3469 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
1911, 18bitri 274 . . . . 5 (∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
20 df-rex 3069 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
21 eldif 3893 . . . . . 6 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
22 elin 3899 . . . . . . . 8 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (𝑓 Funs 𝑓 ∈ (Domain “ On)))
2312elfuns 34144 . . . . . . . . 9 (𝑓 Funs ↔ Fun 𝑓)
2412elima 5963 . . . . . . . . . 10 (𝑓 ∈ (Domain “ On) ↔ ∃𝑥 ∈ On 𝑥Domain𝑓)
25 df-rex 3069 . . . . . . . . . 10 (∃𝑥 ∈ On 𝑥Domain𝑓 ↔ ∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓))
26 vex 3426 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2726, 12brcnv 5780 . . . . . . . . . . . . . 14 (𝑥Domain𝑓𝑓Domain𝑥)
2812, 26brdomain 34162 . . . . . . . . . . . . . 14 (𝑓Domain𝑥𝑥 = dom 𝑓)
2927, 28bitri 274 . . . . . . . . . . . . 13 (𝑥Domain𝑓𝑥 = dom 𝑓)
3029anbi1ci 625 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ (𝑥 = dom 𝑓𝑥 ∈ On))
3130exbii 1851 . . . . . . . . . . 11 (∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 ∈ On))
3213, 14ceqsexv 3469 . . . . . . . . . . 11 (∃𝑥(𝑥 = dom 𝑓𝑥 ∈ On) ↔ dom 𝑓 ∈ On)
3331, 32bitri 274 . . . . . . . . . 10 (∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ dom 𝑓 ∈ On)
3424, 25, 333bitri 296 . . . . . . . . 9 (𝑓 ∈ (Domain “ On) ↔ dom 𝑓 ∈ On)
3523, 34anbi12i 626 . . . . . . . 8 ((𝑓 Funs 𝑓 ∈ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
3622, 35bitri 274 . . . . . . 7 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
3736anbi1i 623 . . . . . 6 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
38 brdif 5123 . . . . . . . . . . . . . . 15 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ (𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
39 vex 3426 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4012, 39brco 5768 . . . . . . . . . . . . . . . . 17 (𝑓( E ∘ Domain)𝑦 ↔ ∃𝑥(𝑓Domain𝑥𝑥 E 𝑦))
4128anbi1i 623 . . . . . . . . . . . . . . . . . . 19 ((𝑓Domain𝑥𝑥 E 𝑦) ↔ (𝑥 = dom 𝑓𝑥 E 𝑦))
4241exbii 1851 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦))
43 breq1 5073 . . . . . . . . . . . . . . . . . . 19 (𝑥 = dom 𝑓 → (𝑥 E 𝑦 ↔ dom 𝑓 E 𝑦))
4413, 43ceqsexv 3469 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
4542, 44bitri 274 . . . . . . . . . . . . . . . . 17 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
4613, 39brcnv 5780 . . . . . . . . . . . . . . . . . 18 (dom 𝑓 E 𝑦𝑦 E dom 𝑓)
4713epeli 5488 . . . . . . . . . . . . . . . . . 18 (𝑦 E dom 𝑓𝑦 ∈ dom 𝑓)
4846, 47bitri 274 . . . . . . . . . . . . . . . . 17 (dom 𝑓 E 𝑦𝑦 ∈ dom 𝑓)
4940, 45, 483bitri 296 . . . . . . . . . . . . . . . 16 (𝑓( E ∘ Domain)𝑦𝑦 ∈ dom 𝑓)
5049anbi1i 623 . . . . . . . . . . . . . . 15 ((𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
5138, 50bitri 274 . . . . . . . . . . . . . 14 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
52 onelon 6276 . . . . . . . . . . . . . . . . . . . . . . . 24 ((dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → 𝑦 ∈ On)
53523adant1 1128 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → 𝑦 ∈ On)
54 brun 5121 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥 ↔ (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ∨ ⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥))
55 brxp 5627 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ∧ 𝑥 ∈ { {𝐴}}))
56 opelxp 5616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ (𝑓 ∈ V ∧ 𝑦 ∈ {∅}))
5712, 56mpbiran 705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ 𝑦 ∈ {∅})
58 velsn 4574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
5957, 58bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ 𝑦 = ∅)
60 velsn 4574 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ { {𝐴}} ↔ 𝑥 = {𝐴})
6159, 60anbi12i 626 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ∧ 𝑥 ∈ { {𝐴}}) ↔ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
6255, 61bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ↔ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
63 brun 5121 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥 ↔ (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ∨ ⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥))
6426brresi 5889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ∧ ⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥))
65 opelxp 5616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ (𝑓 ∈ V ∧ 𝑦 Limits ))
6612, 65mpbiran 705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ 𝑦 Limits )
6739ellimits 34139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 Limits ↔ Lim 𝑦)
6866, 67bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ Lim 𝑦)
69 opex 5373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑓, 𝑦⟩ ∈ V
7069, 26brco 5768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥 ↔ ∃𝑧(⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥))
71 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑧 ∈ V
7212, 39, 71brimg 34166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⟨𝑓, 𝑦⟩Img𝑧𝑧 = (𝑓𝑦))
7326brbigcup 34127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 Bigcup 𝑥 𝑧 = 𝑥)
7472, 73anbi12i 626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥) ↔ (𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥))
7574exbii 1851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧(⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥) ↔ ∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥))
7612imaex 7737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓𝑦) ∈ V
77 unieq 4847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑓𝑦) → 𝑧 = (𝑓𝑦))
7877eqeq1d 2740 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑓𝑦) → ( 𝑧 = 𝑥 (𝑓𝑦) = 𝑥))
7976, 78ceqsexv 3469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥) ↔ (𝑓𝑦) = 𝑥)
80 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( (𝑓𝑦) = 𝑥𝑥 = (𝑓𝑦))
8179, 80bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥) ↔ 𝑥 = (𝑓𝑦))
8270, 75, 813bitri 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥𝑥 = (𝑓𝑦))
8368, 82anbi12i 626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ∧ ⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥) ↔ (Lim 𝑦𝑥 = (𝑓𝑦)))
8464, 83bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ↔ (Lim 𝑦𝑥 = (𝑓𝑦)))
8526brresi 5889 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥))
86 opelxp 5616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ (𝑓 ∈ V ∧ 𝑦 ∈ ran Succ))
8712, 86mpbiran 705 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ 𝑦 ∈ ran Succ)
8839elrn 5791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ran Succ ↔ ∃𝑧 𝑧Succ𝑦)
8971, 39brsuccf 34170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧Succ𝑦𝑦 = suc 𝑧)
9089exbii 1851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧 𝑧Succ𝑦 ↔ ∃𝑧 𝑦 = suc 𝑧)
9187, 88, 903bitri 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ ∃𝑧 𝑦 = suc 𝑧)
9269, 26brco 5768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥 ↔ ∃𝑎(⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥))
93 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑎 ∈ V
9469, 93brco 5768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎 ↔ ∃𝑧(⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎))
9512, 39, 71brpprod3a 34115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧 ↔ ∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏))
96 3anrot 1098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ (𝑓 I 𝑎𝑦 Bigcup 𝑏𝑧 = ⟨𝑎, 𝑏⟩))
9793ideq 5750 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓 I 𝑎𝑓 = 𝑎)
98 equcom 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓 = 𝑎𝑎 = 𝑓)
9997, 98bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑓 I 𝑎𝑎 = 𝑓)
100 vex 3426 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 𝑏 ∈ V
101100brbigcup 34127 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 Bigcup 𝑏 𝑦 = 𝑏)
102 eqcom 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ( 𝑦 = 𝑏𝑏 = 𝑦)
103101, 102bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 Bigcup 𝑏𝑏 = 𝑦)
104 biid 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑎, 𝑏⟩)
10599, 103, 1043anbi123i 1153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓 I 𝑎𝑦 Bigcup 𝑏𝑧 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
10696, 105bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ (𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
1071062exbii 1852 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
108 vuniex 7570 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 𝑦 ∈ V
109 opeq1 4801 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 = 𝑓 → ⟨𝑎, 𝑏⟩ = ⟨𝑓, 𝑏⟩)
110109eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑎 = 𝑓 → (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑓, 𝑏⟩))
111 opeq2 4802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑏 = 𝑦 → ⟨𝑓, 𝑏⟩ = ⟨𝑓, 𝑦⟩)
112111eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑏 = 𝑦 → (𝑧 = ⟨𝑓, 𝑏⟩ ↔ 𝑧 = ⟨𝑓, 𝑦⟩))
11312, 108, 110, 112ceqsex2v 3473 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∃𝑎𝑏(𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩) ↔ 𝑧 = ⟨𝑓, 𝑦⟩)
11495, 107, 1133bitri 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧 = ⟨𝑓, 𝑦⟩)
115114anbi1i 623 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎) ↔ (𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎))
116115exbii 1851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑧(⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎) ↔ ∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎))
117 opex 5373 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑓, 𝑦⟩ ∈ V
118 breq1 5073 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = ⟨𝑓, 𝑦⟩ → (𝑧Apply𝑎 ↔ ⟨𝑓, 𝑦⟩Apply𝑎))
119117, 118ceqsexv 3469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎) ↔ ⟨𝑓, 𝑦⟩Apply𝑎)
12012, 108, 93brapply 34167 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (⟨𝑓, 𝑦⟩Apply𝑎𝑎 = (𝑓 𝑦))
121119, 120bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎) ↔ 𝑎 = (𝑓 𝑦))
12294, 116, 1213bitri 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎 = (𝑓 𝑦))
12393, 26brfullfun 34177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎FullFun𝐹𝑥𝑥 = (𝐹𝑎))
124122, 123anbi12i 626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥) ↔ (𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)))
125124exbii 1851 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑎(⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥) ↔ ∃𝑎(𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)))
126 fvex 6769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 𝑦) ∈ V
127 fveq2 6756 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎 = (𝑓 𝑦) → (𝐹𝑎) = (𝐹‘(𝑓 𝑦)))
128127eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 = (𝑓 𝑦) → (𝑥 = (𝐹𝑎) ↔ 𝑥 = (𝐹‘(𝑓 𝑦))))
129126, 128ceqsexv 3469 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑎(𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)) ↔ 𝑥 = (𝐹‘(𝑓 𝑦)))
13092, 125, 1293bitri 296 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥𝑥 = (𝐹‘(𝑓 𝑦)))
13191, 130anbi12i 626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥) ↔ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
13285, 131bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥 ↔ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
13384, 132orbi12i 911 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ∨ ⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥) ↔ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
13463, 133bitri 274 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥 ↔ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
13562, 134orbi12i 911 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ∨ ⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥) ↔ ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
13654, 135bitri 274 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥 ↔ ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
137 onzsl 7668 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ On ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ (𝑦 ∈ V ∧ Lim 𝑦)))
138 nlim0 6309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ Lim ∅
139 limeq 6263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → (Lim 𝑦 ↔ Lim ∅))
140138, 139mtbiri 326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → ¬ Lim 𝑦)
141140intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → ¬ (Lim 𝑦𝑥 = (𝑓𝑦)))
142 nsuceq0 6331 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 suc 𝑧 ≠ ∅
143 neeq2 3006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = ∅ → (suc 𝑧𝑦 ↔ suc 𝑧 ≠ ∅))
144142, 143mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = ∅ → suc 𝑧𝑦)
145144necomd 2998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = ∅ → 𝑦 ≠ suc 𝑧)
146145neneqd 2947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → ¬ 𝑦 = suc 𝑧)
147146nexdv 1940 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → ¬ ∃𝑧 𝑦 = suc 𝑧)
148147intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
149 ioran 980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) ↔ (¬ (Lim 𝑦𝑥 = (𝑓𝑦)) ∧ ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
150141, 148, 149sylanbrc 582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → ¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
151 orel2 887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
152150, 151syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
153 iftrue 4462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝐴 ∈ V, 𝐴, ∅))
154 unisnif 34154 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)
155153, 154eqtr4di 2797 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = {𝐴})
156155eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = {𝐴}))
157156biimprd 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → (𝑥 = {𝐴} → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
158157adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
159152, 158syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
160156biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = {𝐴}))
161160anc2li 555 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
162 orc 863 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
163161, 162syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
164159, 163impbid 211 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
165 neeq1 3005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = suc 𝑧 → (𝑦 ≠ ∅ ↔ suc 𝑧 ≠ ∅))
166142, 165mpbiri 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧𝑦 ≠ ∅)
167166neneqd 2947 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = suc 𝑧 → ¬ 𝑦 = ∅)
168167intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = suc 𝑧 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
169168rexlimivw 3210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
170 orel1 885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
171169, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
172 nlimsucg 7664 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ V → ¬ Lim suc 𝑧)
173172elv 3428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ Lim suc 𝑧
174 limeq 6263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧 → (Lim 𝑦 ↔ Lim suc 𝑧))
175173, 174mtbiri 326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = suc 𝑧 → ¬ Lim 𝑦)
176175rexlimivw 3210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ Lim 𝑦)
177176intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ (Lim 𝑦𝑥 = (𝑓𝑦)))
178 orel1 885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ (Lim 𝑦𝑥 = (𝑓𝑦)) → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
179177, 178syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
180142neii 2944 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ¬ suc 𝑧 = ∅
181180iffalsei 4466 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))
182 iffalse 4465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧)))
18371, 172, 182mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧))
184181, 183eqtri 2766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = (𝐹‘(𝑓 suc 𝑧))
185 eqeq1 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
186 unieq 4847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = suc 𝑧 𝑦 = suc 𝑧)
187186fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 = suc 𝑧 → (𝑓 𝑦) = (𝑓 suc 𝑧))
188187fveq2d 6760 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = suc 𝑧 → (𝐹‘(𝑓 𝑦)) = (𝐹‘(𝑓 suc 𝑧)))
189174, 188ifbieq2d 4482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))
190185, 189ifbieq2d 4482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
191184, 190, 1883eqtr4a 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝐹‘(𝑓 𝑦)))
192191rexlimivw 3210 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝐹‘(𝑓 𝑦)))
193192eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = (𝐹‘(𝑓 𝑦))))
194193biimprd 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = (𝐹‘(𝑓 𝑦)) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
195194adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
196171, 179, 1953syld 60 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
197 rexex 3167 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ∃𝑧 𝑦 = suc 𝑧)
198193biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = (𝐹‘(𝑓 𝑦))))
199 olc 864 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
200199olcd 870 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
201197, 198, 200syl6an 680 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
202196, 201impbid 211 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
203140con2i 139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → ¬ 𝑦 = ∅)
204203intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
205204, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
206175exlimiv 1934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑧 𝑦 = suc 𝑧 → ¬ Lim 𝑦)
207206con2i 139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → ¬ ∃𝑧 𝑦 = suc 𝑧)
208207intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
209 orel2 887 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
210208, 209syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
211203iffalsed 4467 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Lim 𝑦 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
212 iftrue 4462 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = (𝑓𝑦))
213211, 212eqtrd 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Lim 𝑦 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝑓𝑦))
214213eqeq2d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = (𝑓𝑦)))
215214biimprd 247 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → (𝑥 = (𝑓𝑦) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
216215adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → ((Lim 𝑦𝑥 = (𝑓𝑦)) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
217205, 210, 2163syld 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑦 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
218217adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ V ∧ Lim 𝑦) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
219214biimpd 228 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = (𝑓𝑦)))
220219anc2li 555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
221 orc 863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((Lim 𝑦𝑥 = (𝑓𝑦)) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
222221olcd 870 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Lim 𝑦𝑥 = (𝑓𝑦)) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
223220, 222syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
224223adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ V ∧ Lim 𝑦) → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
225218, 224impbid 211 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ V ∧ Lim 𝑦) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
226164, 202, 2253jaoi 1425 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ (𝑦 ∈ V ∧ Lim 𝑦)) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
227137, 226sylbi 216 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
228136, 227syl5bb 282 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
22953, 228syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
23026, 69brcnv 5780 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ ⟨𝑓, 𝑦⟩Apply𝑥)
23112, 39, 26brapply 34167 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑓, 𝑦⟩Apply𝑥𝑥 = (𝑓𝑦))
232230, 231bitri 274 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦))
233232a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦)))
234229, 233anbi12d 630 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → ((⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ∧ 𝑥 = (𝑓𝑦))))
235234biancomd 463 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → ((⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
236235exbidv 1925 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
237 df-br 5071 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))
23869elfix 34132 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))) ↔ ⟨𝑓, 𝑦⟩(Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))⟨𝑓, 𝑦⟩)
23969, 69brco 5768 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑓, 𝑦⟩(Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))⟨𝑓, 𝑦⟩ ↔ ∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩))
240237, 238, 2393bitri 296 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩))
241 fvex 6769 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑦) ∈ V
242241eqvinc 3571 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
243236, 240, 2423bitr4g 313 . . . . . . . . . . . . . . . . . 18 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
244243notbid 317 . . . . . . . . . . . . . . . . 17 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
2452443expia 1119 . . . . . . . . . . . . . . . 16 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (𝑦 ∈ dom 𝑓 → (¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
246245pm5.32d 576 . . . . . . . . . . . . . . 15 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → ((𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
247 annim 403 . . . . . . . . . . . . . . 15 ((𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
248246, 247bitrdi 286 . . . . . . . . . . . . . 14 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → ((𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
24951, 248syl5bb 282 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
250249exbidv 1925 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ ∃𝑦 ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
251 exnal 1830 . . . . . . . . . . . 12 (∃𝑦 ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
252250, 251bitr2di 287 . . . . . . . . . . 11 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦))
25312eldm 5798 . . . . . . . . . . 11 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦)
254252, 253bitr4di 288 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
255254con1bid 355 . . . . . . . . 9 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
256 df-ral 3068 . . . . . . . . 9 (∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
257255, 256bitr4di 288 . . . . . . . 8 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
258257pm5.32i 574 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
259 anass 468 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
260258, 259bitri 274 . . . . . 6 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
26121, 37, 2603bitri 296 . . . . 5 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
26219, 20, 2613bitr4ri 303 . . . 4 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
263262abbi2i 2878 . . 3 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
264263unieqi 4849 . 2 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
2651, 264eqtr4i 2769 1 rec(𝐹, 𝐴) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  w3o 1084  w3a 1085  wal 1537   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  c0 4253  ifcif 4456  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070   I cid 5479   E cep 5485   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  ccom 5584  Oncon0 6251  Lim wlim 6252  suc csuc 6253  Fun wfun 6412   Fn wfn 6413  cfv 6418  reccrdg 8211  pprodcpprod 34060   Bigcup cbigcup 34063   Fix cfix 34064   Limits climits 34065   Funs cfuns 34066  Imgcimg 34071  Domaincdomain 34072  Applycapply 34074  Succcsuccf 34077  FullFuncfullfn 34079
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-symdif 4173  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-txp 34083  df-pprod 34084  df-bigcup 34087  df-fix 34088  df-limits 34089  df-funs 34090  df-singleton 34091  df-singles 34092  df-image 34093  df-cart 34094  df-img 34095  df-domain 34096  df-cup 34098  df-succf 34101  df-apply 34102  df-funpart 34103  df-fullfun 34104
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator