Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg4 Structured version   Visualization version   GIF version

Theorem dfrdg4 35946
Description: A quantifier-free definition of the recursive definition generator. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
Assertion
Ref Expression
dfrdg4 rec(𝐹, 𝐴) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))))

Proof of Theorem dfrdg4
Dummy variables 𝑎 𝑏 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfrdg3 35791 . 2 rec(𝐹, 𝐴) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
2 an12 645 . . . . . . . 8 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
3 df-fn 6517 . . . . . . . . . 10 (𝑓 Fn 𝑥 ↔ (Fun 𝑓 ∧ dom 𝑓 = 𝑥))
4 ancom 460 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 = 𝑥) ↔ (dom 𝑓 = 𝑥 ∧ Fun 𝑓))
5 eqcom 2737 . . . . . . . . . . 11 (dom 𝑓 = 𝑥𝑥 = dom 𝑓)
65anbi1i 624 . . . . . . . . . 10 ((dom 𝑓 = 𝑥 ∧ Fun 𝑓) ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
73, 4, 63bitri 297 . . . . . . . . 9 (𝑓 Fn 𝑥 ↔ (𝑥 = dom 𝑓 ∧ Fun 𝑓))
87anbi1i 624 . . . . . . . 8 ((𝑓 Fn 𝑥 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ ((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
9 anass 468 . . . . . . . 8 (((𝑥 = dom 𝑓 ∧ Fun 𝑓) ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
102, 8, 93bitri 297 . . . . . . 7 ((𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
1110exbii 1848 . . . . . 6 (∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ ∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
12 vex 3454 . . . . . . . 8 𝑓 ∈ V
1312dmex 7888 . . . . . . 7 dom 𝑓 ∈ V
14 eleq1 2817 . . . . . . . . 9 (𝑥 = dom 𝑓 → (𝑥 ∈ On ↔ dom 𝑓 ∈ On))
15 raleq 3298 . . . . . . . . 9 (𝑥 = dom 𝑓 → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1614, 15anbi12d 632 . . . . . . . 8 (𝑥 = dom 𝑓 → ((𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
1716anbi2d 630 . . . . . . 7 (𝑥 = dom 𝑓 → ((Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))))
1813, 17ceqsexv 3501 . . . . . 6 (∃𝑥(𝑥 = dom 𝑓 ∧ (Fun 𝑓 ∧ (𝑥 ∈ On ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
1911, 18bitri 275 . . . . 5 (∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
20 df-rex 3055 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥(𝑥 ∈ On ∧ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
21 eldif 3927 . . . . . 6 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
22 elin 3933 . . . . . . . 8 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (𝑓 Funs 𝑓 ∈ (Domain “ On)))
2312elfuns 35910 . . . . . . . . 9 (𝑓 Funs ↔ Fun 𝑓)
2412elima 6039 . . . . . . . . . 10 (𝑓 ∈ (Domain “ On) ↔ ∃𝑥 ∈ On 𝑥Domain𝑓)
25 df-rex 3055 . . . . . . . . . 10 (∃𝑥 ∈ On 𝑥Domain𝑓 ↔ ∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓))
26 vex 3454 . . . . . . . . . . . . . . 15 𝑥 ∈ V
2726, 12brcnv 5849 . . . . . . . . . . . . . 14 (𝑥Domain𝑓𝑓Domain𝑥)
2812, 26brdomain 35928 . . . . . . . . . . . . . 14 (𝑓Domain𝑥𝑥 = dom 𝑓)
2927, 28bitri 275 . . . . . . . . . . . . 13 (𝑥Domain𝑓𝑥 = dom 𝑓)
3029anbi1ci 626 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ (𝑥 = dom 𝑓𝑥 ∈ On))
3130exbii 1848 . . . . . . . . . . 11 (∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 ∈ On))
3213, 14ceqsexv 3501 . . . . . . . . . . 11 (∃𝑥(𝑥 = dom 𝑓𝑥 ∈ On) ↔ dom 𝑓 ∈ On)
3331, 32bitri 275 . . . . . . . . . 10 (∃𝑥(𝑥 ∈ On ∧ 𝑥Domain𝑓) ↔ dom 𝑓 ∈ On)
3424, 25, 333bitri 297 . . . . . . . . 9 (𝑓 ∈ (Domain “ On) ↔ dom 𝑓 ∈ On)
3523, 34anbi12i 628 . . . . . . . 8 ((𝑓 Funs 𝑓 ∈ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
3622, 35bitri 275 . . . . . . 7 (𝑓 ∈ ( Funs ∩ (Domain “ On)) ↔ (Fun 𝑓 ∧ dom 𝑓 ∈ On))
3736anbi1i 624 . . . . . 6 ((𝑓 ∈ ( Funs ∩ (Domain “ On)) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
38 brdif 5163 . . . . . . . . . . . . . . 15 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ (𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
39 vex 3454 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
4012, 39brco 5837 . . . . . . . . . . . . . . . . 17 (𝑓( E ∘ Domain)𝑦 ↔ ∃𝑥(𝑓Domain𝑥𝑥 E 𝑦))
4128anbi1i 624 . . . . . . . . . . . . . . . . . . 19 ((𝑓Domain𝑥𝑥 E 𝑦) ↔ (𝑥 = dom 𝑓𝑥 E 𝑦))
4241exbii 1848 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ ∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦))
43 breq1 5113 . . . . . . . . . . . . . . . . . . 19 (𝑥 = dom 𝑓 → (𝑥 E 𝑦 ↔ dom 𝑓 E 𝑦))
4413, 43ceqsexv 3501 . . . . . . . . . . . . . . . . . 18 (∃𝑥(𝑥 = dom 𝑓𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
4542, 44bitri 275 . . . . . . . . . . . . . . . . 17 (∃𝑥(𝑓Domain𝑥𝑥 E 𝑦) ↔ dom 𝑓 E 𝑦)
4613, 39brcnv 5849 . . . . . . . . . . . . . . . . . 18 (dom 𝑓 E 𝑦𝑦 E dom 𝑓)
4713epeli 5543 . . . . . . . . . . . . . . . . . 18 (𝑦 E dom 𝑓𝑦 ∈ dom 𝑓)
4846, 47bitri 275 . . . . . . . . . . . . . . . . 17 (dom 𝑓 E 𝑦𝑦 ∈ dom 𝑓)
4940, 45, 483bitri 297 . . . . . . . . . . . . . . . 16 (𝑓( E ∘ Domain)𝑦𝑦 ∈ dom 𝑓)
5049anbi1i 624 . . . . . . . . . . . . . . 15 ((𝑓( E ∘ Domain)𝑦 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
5138, 50bitri 275 . . . . . . . . . . . . . 14 (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦))
52 onelon 6360 . . . . . . . . . . . . . . . . . . . . . . . 24 ((dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → 𝑦 ∈ On)
53523adant1 1130 . . . . . . . . . . . . . . . . . . . . . . 23 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → 𝑦 ∈ On)
54 brun 5161 . . . . . . . . . . . . . . . . . . . . . . . . 25 (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥 ↔ (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ∨ ⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥))
55 brxp 5690 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ∧ 𝑥 ∈ { {𝐴}}))
56 opelxp 5677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ (𝑓 ∈ V ∧ 𝑦 ∈ {∅}))
5712, 56mpbiran 709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ 𝑦 ∈ {∅})
58 velsn 4608 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 ∈ {∅} ↔ 𝑦 = ∅)
5957, 58bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ↔ 𝑦 = ∅)
60 velsn 4608 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑥 ∈ { {𝐴}} ↔ 𝑥 = {𝐴})
6159, 60anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑓, 𝑦⟩ ∈ (V × {∅}) ∧ 𝑥 ∈ { {𝐴}}) ↔ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
6255, 61bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ↔ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
63 brun 5161 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥 ↔ (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ∨ ⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥))
6426brresi 5962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ∧ ⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥))
65 opelxp 5677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ (𝑓 ∈ V ∧ 𝑦 Limits ))
6612, 65mpbiran 709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ 𝑦 Limits )
6739ellimits 35905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 Limits ↔ Lim 𝑦)
6866, 67bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ↔ Lim 𝑦)
69 opex 5427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 𝑓, 𝑦⟩ ∈ V
7069, 26brco 5837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥 ↔ ∃𝑧(⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥))
71 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 𝑧 ∈ V
7212, 39, 71brimg 35932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⟨𝑓, 𝑦⟩Img𝑧𝑧 = (𝑓𝑦))
7326brbigcup 35893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 Bigcup 𝑥 𝑧 = 𝑥)
7472, 73anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥) ↔ (𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥))
7574exbii 1848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧(⟨𝑓, 𝑦⟩Img𝑧𝑧 Bigcup 𝑥) ↔ ∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥))
7612imaex 7893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑓𝑦) ∈ V
77 unieq 4885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑧 = (𝑓𝑦) → 𝑧 = (𝑓𝑦))
7877eqeq1d 2732 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 = (𝑓𝑦) → ( 𝑧 = 𝑥 (𝑓𝑦) = 𝑥))
7976, 78ceqsexv 3501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥) ↔ (𝑓𝑦) = 𝑥)
80 eqcom 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ( (𝑓𝑦) = 𝑥𝑥 = (𝑓𝑦))
8179, 80bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧(𝑧 = (𝑓𝑦) ∧ 𝑧 = 𝑥) ↔ 𝑥 = (𝑓𝑦))
8270, 75, 813bitri 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥𝑥 = (𝑓𝑦))
8368, 82anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨𝑓, 𝑦⟩ ∈ (V × Limits ) ∧ ⟨𝑓, 𝑦⟩( Bigcup ∘ Img)𝑥) ↔ (Lim 𝑦𝑥 = (𝑓𝑦)))
8464, 83bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ↔ (Lim 𝑦𝑥 = (𝑓𝑦)))
8526brresi 5962 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥 ↔ (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥))
86 opelxp 5677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ (𝑓 ∈ V ∧ 𝑦 ∈ ran Succ))
8712, 86mpbiran 709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ 𝑦 ∈ ran Succ)
8839elrn 5860 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 ∈ ran Succ ↔ ∃𝑧 𝑧Succ𝑦)
8971, 39brsuccf 35936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧Succ𝑦𝑦 = suc 𝑧)
9089exbii 1848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧 𝑧Succ𝑦 ↔ ∃𝑧 𝑦 = suc 𝑧)
9187, 88, 903bitri 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ↔ ∃𝑧 𝑦 = suc 𝑧)
9269, 26brco 5837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥 ↔ ∃𝑎(⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥))
93 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 𝑎 ∈ V
9469, 93brco 5837 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎 ↔ ∃𝑧(⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎))
9512, 39, 71brpprod3a 35881 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧 ↔ ∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏))
96 3anrot 1099 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ (𝑓 I 𝑎𝑦 Bigcup 𝑏𝑧 = ⟨𝑎, 𝑏⟩))
9793ideq 5819 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓 I 𝑎𝑓 = 𝑎)
98 equcom 2018 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑓 = 𝑎𝑎 = 𝑓)
9997, 98bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑓 I 𝑎𝑎 = 𝑓)
100 vex 3454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 𝑏 ∈ V
101100brbigcup 35893 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 (𝑦 Bigcup 𝑏 𝑦 = 𝑏)
102 eqcom 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ( 𝑦 = 𝑏𝑏 = 𝑦)
103101, 102bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑦 Bigcup 𝑏𝑏 = 𝑦)
104 biid 261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑎, 𝑏⟩)
10599, 103, 1043anbi123i 1155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑓 I 𝑎𝑦 Bigcup 𝑏𝑧 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
10696, 105bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ (𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
1071062exbii 1849 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝑓 I 𝑎𝑦 Bigcup 𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩))
108 vuniex 7718 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 𝑦 ∈ V
109 opeq1 4840 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑎 = 𝑓 → ⟨𝑎, 𝑏⟩ = ⟨𝑓, 𝑏⟩)
110109eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑎 = 𝑓 → (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑓, 𝑏⟩))
111 opeq2 4841 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑏 = 𝑦 → ⟨𝑓, 𝑏⟩ = ⟨𝑓, 𝑦⟩)
112111eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑏 = 𝑦 → (𝑧 = ⟨𝑓, 𝑏⟩ ↔ 𝑧 = ⟨𝑓, 𝑦⟩))
11312, 108, 110, 112ceqsex2v 3505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (∃𝑎𝑏(𝑎 = 𝑓𝑏 = 𝑦𝑧 = ⟨𝑎, 𝑏⟩) ↔ 𝑧 = ⟨𝑓, 𝑦⟩)
11495, 107, 1133bitri 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧 = ⟨𝑓, 𝑦⟩)
115114anbi1i 624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎) ↔ (𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎))
116115exbii 1848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑧(⟨𝑓, 𝑦⟩pprod( I , Bigcup )𝑧𝑧Apply𝑎) ↔ ∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎))
117 opex 5427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 𝑓, 𝑦⟩ ∈ V
118 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑧 = ⟨𝑓, 𝑦⟩ → (𝑧Apply𝑎 ↔ ⟨𝑓, 𝑦⟩Apply𝑎))
119117, 118ceqsexv 3501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎) ↔ ⟨𝑓, 𝑦⟩Apply𝑎)
12012, 108, 93brapply 35933 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (⟨𝑓, 𝑦⟩Apply𝑎𝑎 = (𝑓 𝑦))
121119, 120bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∃𝑧(𝑧 = ⟨𝑓, 𝑦⟩ ∧ 𝑧Apply𝑎) ↔ 𝑎 = (𝑓 𝑦))
12294, 116, 1213bitri 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎 = (𝑓 𝑦))
12393, 26brfullfun 35943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎FullFun𝐹𝑥𝑥 = (𝐹𝑎))
124122, 123anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥) ↔ (𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)))
125124exbii 1848 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑎(⟨𝑓, 𝑦⟩(Apply ∘ pprod( I , Bigcup ))𝑎𝑎FullFun𝐹𝑥) ↔ ∃𝑎(𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)))
126 fvex 6874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑓 𝑦) ∈ V
127 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑎 = (𝑓 𝑦) → (𝐹𝑎) = (𝐹‘(𝑓 𝑦)))
128127eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑎 = (𝑓 𝑦) → (𝑥 = (𝐹𝑎) ↔ 𝑥 = (𝐹‘(𝑓 𝑦))))
129126, 128ceqsexv 3501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑎(𝑎 = (𝑓 𝑦) ∧ 𝑥 = (𝐹𝑎)) ↔ 𝑥 = (𝐹‘(𝑓 𝑦)))
13092, 125, 1293bitri 297 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥𝑥 = (𝐹‘(𝑓 𝑦)))
13191, 130anbi12i 628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((⟨𝑓, 𝑦⟩ ∈ (V × ran Succ) ∧ ⟨𝑓, 𝑦⟩(FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup )))𝑥) ↔ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
13285, 131bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥 ↔ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
13384, 132orbi12i 914 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((⟨𝑓, 𝑦⟩(( Bigcup ∘ Img) ↾ (V × Limits ))𝑥 ∨ ⟨𝑓, 𝑦⟩((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))𝑥) ↔ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
13463, 133bitri 275 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥 ↔ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
13562, 134orbi12i 914 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((⟨𝑓, 𝑦⟩((V × {∅}) × { {𝐴}})𝑥 ∨ ⟨𝑓, 𝑦⟩((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))𝑥) ↔ ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
13654, 135bitri 275 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥 ↔ ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
137 onzsl 7825 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ On ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ (𝑦 ∈ V ∧ Lim 𝑦)))
138 nlim0 6395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ Lim ∅
139 limeq 6347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → (Lim 𝑦 ↔ Lim ∅))
140138, 139mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → ¬ Lim 𝑦)
141140intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → ¬ (Lim 𝑦𝑥 = (𝑓𝑦)))
142 nsuceq0 6420 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 suc 𝑧 ≠ ∅
143 neeq2 2989 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = ∅ → (suc 𝑧𝑦 ↔ suc 𝑧 ≠ ∅))
144142, 143mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = ∅ → suc 𝑧𝑦)
145144necomd 2981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = ∅ → 𝑦 ≠ suc 𝑧)
146145neneqd 2931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → ¬ 𝑦 = suc 𝑧)
147146nexdv 1936 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → ¬ ∃𝑧 𝑦 = suc 𝑧)
148147intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
149 ioran 985 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) ↔ (¬ (Lim 𝑦𝑥 = (𝑓𝑦)) ∧ ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
150141, 148, 149sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → ¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
151 orel2 890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
152150, 151syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
153 iftrue 4497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝐴 ∈ V, 𝐴, ∅))
154 unisnif 35920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 {𝐴} = if(𝐴 ∈ V, 𝐴, ∅)
155153, 154eqtr4di 2783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = {𝐴})
156155eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = {𝐴}))
157156biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → (𝑥 = {𝐴} → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
158157adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
159152, 158syld 47 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
160156biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = {𝐴}))
161160anc2li 555 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → (𝑦 = ∅ ∧ 𝑥 = {𝐴})))
162 orc 867 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
163161, 162syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 = ∅ → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
164159, 163impbid 212 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = ∅ → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
165 neeq1 2988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = suc 𝑧 → (𝑦 ≠ ∅ ↔ suc 𝑧 ≠ ∅))
166142, 165mpbiri 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧𝑦 ≠ ∅)
167166neneqd 2931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = suc 𝑧 → ¬ 𝑦 = ∅)
168167intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑦 = suc 𝑧 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
169168rexlimivw 3131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
170 orel1 888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
171169, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
172 nlimsucg 7821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑧 ∈ V → ¬ Lim suc 𝑧)
173172elv 3455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ¬ Lim suc 𝑧
174 limeq 6347 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧 → (Lim 𝑦 ↔ Lim suc 𝑧))
175173, 174mtbiri 327 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = suc 𝑧 → ¬ Lim 𝑦)
176175rexlimivw 3131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ Lim 𝑦)
177176intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ¬ (Lim 𝑦𝑥 = (𝑓𝑦)))
178 orel1 888 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (¬ (Lim 𝑦𝑥 = (𝑓𝑦)) → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
179177, 178syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
180142neii 2928 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ¬ suc 𝑧 = ∅
181180iffalsei 4501 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))
182 iffalse 4500 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧)))
18371, 172, 182mp2b 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧))
184181, 183eqtri 2753 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = (𝐹‘(𝑓 suc 𝑧))
185 eqeq1 2734 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
186 unieq 4885 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (𝑦 = suc 𝑧 𝑦 = suc 𝑧)
187186fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 (𝑦 = suc 𝑧 → (𝑓 𝑦) = (𝑓 suc 𝑧))
188187fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (𝑦 = suc 𝑧 → (𝐹‘(𝑓 𝑦)) = (𝐹‘(𝑓 suc 𝑧)))
189174, 188ifbieq2d 4518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))
190185, 189ifbieq2d 4518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(suc 𝑧 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
191184, 190, 1883eqtr4a 2791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝐹‘(𝑓 𝑦)))
192191rexlimivw 3131 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝐹‘(𝑓 𝑦)))
193192eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = (𝐹‘(𝑓 𝑦))))
194193biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = (𝐹‘(𝑓 𝑦)) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
195194adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
196171, 179, 1953syld 60 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
197 rexex 3060 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → ∃𝑧 𝑦 = suc 𝑧)
198193biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = (𝐹‘(𝑓 𝑦))))
199 olc 868 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
200199olcd 874 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
201197, 198, 200syl6an 684 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
202196, 201impbid 212 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
203140con2i 139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → ¬ 𝑦 = ∅)
204203intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → ¬ (𝑦 = ∅ ∧ 𝑥 = {𝐴}))
205204, 170syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
206175exlimiv 1930 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (∃𝑧 𝑦 = suc 𝑧 → ¬ Lim 𝑦)
207206con2i 139 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → ¬ ∃𝑧 𝑦 = suc 𝑧)
208207intnanrd 489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → ¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))
209 orel2 890 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (¬ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))) → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
210208, 209syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
211203iffalsed 4502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Lim 𝑦 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
212 iftrue 4497 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = (𝑓𝑦))
213211, 212eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (Lim 𝑦 → if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = (𝑓𝑦))
214213eqeq2d 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ 𝑥 = (𝑓𝑦)))
215214biimprd 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → (𝑥 = (𝑓𝑦) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
216215adantld 490 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → ((Lim 𝑦𝑥 = (𝑓𝑦)) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
217205, 210, 2163syld 60 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑦 → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
218217adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ V ∧ Lim 𝑦) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) → 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
219214biimpd 229 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → 𝑥 = (𝑓𝑦)))
220219anc2li 555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → (Lim 𝑦𝑥 = (𝑓𝑦))))
221 orc 867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((Lim 𝑦𝑥 = (𝑓𝑦)) → ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))
222221olcd 874 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Lim 𝑦𝑥 = (𝑓𝑦)) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))))
223220, 222syl6 35 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (Lim 𝑦 → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
224223adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ V ∧ Lim 𝑦) → (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) → ((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦)))))))
225218, 224impbid 212 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑦 ∈ V ∧ Lim 𝑦) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
226164, 202, 2253jaoi 1430 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ (𝑦 ∈ V ∧ Lim 𝑦)) → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
227137, 226sylbi 217 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 ∈ On → (((𝑦 = ∅ ∧ 𝑥 = {𝐴}) ∨ ((Lim 𝑦𝑥 = (𝑓𝑦)) ∨ (∃𝑧 𝑦 = suc 𝑧𝑥 = (𝐹‘(𝑓 𝑦))))) ↔ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
228136, 227bitrid 283 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ On → (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
22953, 228syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
23026, 69brcnv 5849 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ ⟨𝑓, 𝑦⟩Apply𝑥)
23112, 39, 26brapply 35933 . . . . . . . . . . . . . . . . . . . . . . . 24 (⟨𝑓, 𝑦⟩Apply𝑥𝑥 = (𝑓𝑦))
232230, 231bitri 275 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦))
233232a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (𝑥Apply⟨𝑓, 𝑦⟩ ↔ 𝑥 = (𝑓𝑦)))
234229, 233anbi12d 632 . . . . . . . . . . . . . . . . . . . . 21 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → ((⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ∧ 𝑥 = (𝑓𝑦))))
235234biancomd 463 . . . . . . . . . . . . . . . . . . . 20 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → ((⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ (𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
236235exbidv 1921 . . . . . . . . . . . . . . . . . . 19 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
237 df-br 5111 . . . . . . . . . . . . . . . . . . . 20 (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))
23869elfix 35898 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑓, 𝑦⟩ ∈ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))) ↔ ⟨𝑓, 𝑦⟩(Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))⟨𝑓, 𝑦⟩)
23969, 69brco 5837 . . . . . . . . . . . . . . . . . . . 20 (⟨𝑓, 𝑦⟩(Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))⟨𝑓, 𝑦⟩ ↔ ∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩))
240237, 238, 2393bitri 297 . . . . . . . . . . . . . . . . . . 19 (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ∃𝑥(⟨𝑓, 𝑦⟩(((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))𝑥𝑥Apply⟨𝑓, 𝑦⟩))
241 fvex 6874 . . . . . . . . . . . . . . . . . . . 20 (𝑓𝑦) ∈ V
242241eqvinc 3618 . . . . . . . . . . . . . . . . . . 19 ((𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∃𝑥(𝑥 = (𝑓𝑦) ∧ 𝑥 = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
243236, 240, 2423bitr4g 314 . . . . . . . . . . . . . . . . . 18 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
244243notbid 318 . . . . . . . . . . . . . . . . 17 ((Fun 𝑓 ∧ dom 𝑓 ∈ On ∧ 𝑦 ∈ dom 𝑓) → (¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
2452443expia 1121 . . . . . . . . . . . . . . . 16 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (𝑦 ∈ dom 𝑓 → (¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦 ↔ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
246245pm5.32d 577 . . . . . . . . . . . . . . 15 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → ((𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ (𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
247 annim 403 . . . . . . . . . . . . . . 15 ((𝑦 ∈ dom 𝑓 ∧ ¬ (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
248246, 247bitrdi 287 . . . . . . . . . . . . . 14 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → ((𝑦 ∈ dom 𝑓 ∧ ¬ 𝑓 Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))𝑦) ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
24951, 248bitrid 283 . . . . . . . . . . . . 13 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
250249exbidv 1921 . . . . . . . . . . . 12 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦 ↔ ∃𝑦 ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
251 exnal 1827 . . . . . . . . . . . 12 (∃𝑦 ¬ (𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
252250, 251bitr2di 288 . . . . . . . . . . 11 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦))
25312eldm 5867 . . . . . . . . . . 11 (𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∃𝑦 𝑓(( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))𝑦)
254252, 253bitr4di 289 . . . . . . . . . 10 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))))
255254con1bid 355 . . . . . . . . 9 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
256 df-ral 3046 . . . . . . . . 9 (∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦(𝑦 ∈ dom 𝑓 → (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
257255, 256bitr4di 289 . . . . . . . 8 ((Fun 𝑓 ∧ dom 𝑓 ∈ On) → (¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))) ↔ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
258257pm5.32i 574 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
259 anass 468 . . . . . . 7 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
260258, 259bitri 275 . . . . . 6 (((Fun 𝑓 ∧ dom 𝑓 ∈ On) ∧ ¬ 𝑓 ∈ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
26121, 37, 2603bitri 297 . . . . 5 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ (Fun 𝑓 ∧ (dom 𝑓 ∈ On ∧ ∀𝑦 ∈ dom 𝑓(𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
26219, 20, 2613bitr4ri 304 . . . 4 (𝑓 ∈ (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
263262eqabi 2864 . . 3 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
264263unieqi 4886 . 2 (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ))))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, if(𝐴 ∈ V, 𝐴, ∅), if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
2651, 264eqtr4i 2756 1 rec(𝐹, 𝐴) = (( Funs ∩ (Domain “ On)) ∖ dom (( E ∘ Domain) ∖ Fix (Apply ∘ (((V × {∅}) × { {𝐴}}) ∪ ((( Bigcup ∘ Img) ↾ (V × Limits )) ∪ ((FullFun𝐹 ∘ (Apply ∘ pprod( I , Bigcup ))) ↾ (V × ran Succ)))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3o 1085  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cdif 3914  cun 3915  cin 3916  c0 4299  ifcif 4491  {csn 4592  cop 4598   cuni 4874   class class class wbr 5110   I cid 5535   E cep 5540   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  ccom 5645  Oncon0 6335  Lim wlim 6336  suc csuc 6337  Fun wfun 6508   Fn wfn 6509  cfv 6514  reccrdg 8380  pprodcpprod 35826   Bigcup cbigcup 35829   Fix cfix 35830   Limits climits 35831   Funs cfuns 35832  Imgcimg 35837  Domaincdomain 35838  Applycapply 35840  Succcsuccf 35843  FullFuncfullfn 35845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-symdif 4219  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-txp 35849  df-pprod 35850  df-bigcup 35853  df-fix 35854  df-limits 35855  df-funs 35856  df-singleton 35857  df-singles 35858  df-image 35859  df-cart 35860  df-img 35861  df-domain 35862  df-cup 35864  df-succf 35867  df-apply 35868  df-funpart 35869  df-fullfun 35870
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator