MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2s Structured version   Visualization version   GIF version

Theorem findcard2s 9161
Description: Variation of findcard2 9160 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypotheses
Ref Expression
findcard2s.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2s.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2s.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2s.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2s.5 𝜓
findcard2s.6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))
Assertion
Ref Expression
findcard2s (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜒,𝑥   𝜑,𝑦,𝑧   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard2s
StepHypRef Expression
1 findcard2s.1 . 2 (𝑥 = ∅ → (𝜑𝜓))
2 findcard2s.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
3 findcard2s.3 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
4 findcard2s.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
5 findcard2s.5 . 2 𝜓
6 findcard2s.6 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))
76ex 413 . . 3 (𝑦 ∈ Fin → (¬ 𝑧𝑦 → (𝜒𝜃)))
8 snssi 4810 . . . . . . . 8 (𝑧𝑦 → {𝑧} ⊆ 𝑦)
9 ssequn1 4179 . . . . . . . 8 ({𝑧} ⊆ 𝑦 ↔ ({𝑧} ∪ 𝑦) = 𝑦)
108, 9sylib 217 . . . . . . 7 (𝑧𝑦 → ({𝑧} ∪ 𝑦) = 𝑦)
11 uncom 4152 . . . . . . 7 ({𝑧} ∪ 𝑦) = (𝑦 ∪ {𝑧})
1210, 11eqtr3di 2787 . . . . . 6 (𝑧𝑦𝑦 = (𝑦 ∪ {𝑧}))
13 vex 3478 . . . . . . 7 𝑦 ∈ V
1413eqvinc 3636 . . . . . 6 (𝑦 = (𝑦 ∪ {𝑧}) ↔ ∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})))
1512, 14sylib 217 . . . . 5 (𝑧𝑦 → ∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})))
162bicomd 222 . . . . . . 7 (𝑥 = 𝑦 → (𝜒𝜑))
1716, 3sylan9bb 510 . . . . . 6 ((𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})) → (𝜒𝜃))
1817exlimiv 1933 . . . . 5 (∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})) → (𝜒𝜃))
1915, 18syl 17 . . . 4 (𝑧𝑦 → (𝜒𝜃))
2019biimpd 228 . . 3 (𝑧𝑦 → (𝜒𝜃))
217, 20pm2.61d2 181 . 2 (𝑦 ∈ Fin → (𝜒𝜃))
221, 2, 3, 4, 5, 21findcard2 9160 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  cun 3945  wss 3947  c0 4321  {csn 4627  Fincfn 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-om 7852  df-en 8936  df-fin 8939
This theorem is referenced by:  findcard2d  9162  unfi  9168  ac6sfi  9283  domunfican  9316  fodomfi  9321  hashxplem  14389  hashmap  14391  hashbc  14408  hashf1lem2  14413  hashf1  14414  fsum2d  15713  fsumabs  15743  fsumrlim  15753  fsumo1  15754  fsumiun  15763  incexclem  15778  fprod2d  15921  coprmprod  16594  coprmproddvds  16596  gsum2dlem2  19833  ablfac1eulem  19936  mplcoe1  21583  mplcoe5  21586  coe1fzgsumd  21817  evl1gsumd  21867  mdetunilem9  22113  ptcmpfi  23308  tmdgsum  23590  fsumcn  24377  ovolfiniun  25009  volfiniun  25055  itgfsum  25335  dvmptfsum  25483  jensen  26482  gsumle  32229  gsumvsca1  32358  gsumvsca2  32359  finixpnum  36461  matunitlindflem1  36472  pwslnm  41821  fnchoice  43698  dvmptfprod  44647
  Copyright terms: Public domain W3C validator