| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > findcard2s | Structured version Visualization version GIF version | ||
| Description: Variation of findcard2 9134 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
| Ref | Expression |
|---|---|
| findcard2s.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| findcard2s.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| findcard2s.3 | ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) |
| findcard2s.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| findcard2s.5 | ⊢ 𝜓 |
| findcard2s.6 | ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| findcard2s | ⊢ (𝐴 ∈ Fin → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard2s.1 | . 2 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 2 | findcard2s.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 3 | findcard2s.3 | . 2 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) | |
| 4 | findcard2s.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 5 | findcard2s.5 | . 2 ⊢ 𝜓 | |
| 6 | findcard2s.6 | . . . 4 ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) | |
| 7 | 6 | ex 412 | . . 3 ⊢ (𝑦 ∈ Fin → (¬ 𝑧 ∈ 𝑦 → (𝜒 → 𝜃))) |
| 8 | snssi 4775 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑦 → {𝑧} ⊆ 𝑦) | |
| 9 | ssequn1 4152 | . . . . . . . 8 ⊢ ({𝑧} ⊆ 𝑦 ↔ ({𝑧} ∪ 𝑦) = 𝑦) | |
| 10 | 8, 9 | sylib 218 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 → ({𝑧} ∪ 𝑦) = 𝑦) |
| 11 | uncom 4124 | . . . . . . 7 ⊢ ({𝑧} ∪ 𝑦) = (𝑦 ∪ {𝑧}) | |
| 12 | 10, 11 | eqtr3di 2780 | . . . . . 6 ⊢ (𝑧 ∈ 𝑦 → 𝑦 = (𝑦 ∪ {𝑧})) |
| 13 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 14 | 13 | eqvinc 3618 | . . . . . 6 ⊢ (𝑦 = (𝑦 ∪ {𝑧}) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
| 15 | 12, 14 | sylib 218 | . . . . 5 ⊢ (𝑧 ∈ 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
| 16 | 2 | bicomd 223 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) |
| 17 | 16, 3 | sylan9bb 509 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
| 18 | 17 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
| 19 | 15, 18 | syl 17 | . . . 4 ⊢ (𝑧 ∈ 𝑦 → (𝜒 ↔ 𝜃)) |
| 20 | 19 | biimpd 229 | . . 3 ⊢ (𝑧 ∈ 𝑦 → (𝜒 → 𝜃)) |
| 21 | 7, 20 | pm2.61d2 181 | . 2 ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) |
| 22 | 1, 2, 3, 4, 5, 21 | findcard2 9134 | 1 ⊢ (𝐴 ∈ Fin → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 ∅c0 4299 {csn 4592 Fincfn 8921 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-om 7846 df-en 8922 df-fin 8925 |
| This theorem is referenced by: findcard2d 9136 unfi 9141 ac6sfi 9238 fodomfi 9268 domunfican 9279 fodomfiOLD 9288 hashxplem 14405 hashmap 14407 hashbc 14425 hashf1lem2 14428 hashf1 14429 fsum2d 15744 fsumabs 15774 fsumrlim 15784 fsumo1 15785 fsumiun 15794 incexclem 15809 fprod2d 15954 coprmprod 16638 coprmproddvds 16640 gsum2dlem2 19908 ablfac1eulem 20011 mplcoe1 21951 mplcoe5 21954 coe1fzgsumd 22198 evl1gsumd 22251 mdetunilem9 22514 ptcmpfi 23707 tmdgsum 23989 fsumcn 24768 ovolfiniun 25409 volfiniun 25455 itgfsum 25735 dvmptfsum 25886 jensen 26906 gsumle 33045 gsumvsca1 33186 gsumvsca2 33187 finixpnum 37606 matunitlindflem1 37617 pwslnm 43090 fnchoice 45030 dvmptfprod 45950 |
| Copyright terms: Public domain | W3C validator |