| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > findcard2s | Structured version Visualization version GIF version | ||
| Description: Variation of findcard2 9178 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
| Ref | Expression |
|---|---|
| findcard2s.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| findcard2s.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| findcard2s.3 | ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) |
| findcard2s.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| findcard2s.5 | ⊢ 𝜓 |
| findcard2s.6 | ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| findcard2s | ⊢ (𝐴 ∈ Fin → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard2s.1 | . 2 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 2 | findcard2s.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 3 | findcard2s.3 | . 2 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) | |
| 4 | findcard2s.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 5 | findcard2s.5 | . 2 ⊢ 𝜓 | |
| 6 | findcard2s.6 | . . . 4 ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) | |
| 7 | 6 | ex 412 | . . 3 ⊢ (𝑦 ∈ Fin → (¬ 𝑧 ∈ 𝑦 → (𝜒 → 𝜃))) |
| 8 | snssi 4784 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑦 → {𝑧} ⊆ 𝑦) | |
| 9 | ssequn1 4161 | . . . . . . . 8 ⊢ ({𝑧} ⊆ 𝑦 ↔ ({𝑧} ∪ 𝑦) = 𝑦) | |
| 10 | 8, 9 | sylib 218 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 → ({𝑧} ∪ 𝑦) = 𝑦) |
| 11 | uncom 4133 | . . . . . . 7 ⊢ ({𝑧} ∪ 𝑦) = (𝑦 ∪ {𝑧}) | |
| 12 | 10, 11 | eqtr3di 2785 | . . . . . 6 ⊢ (𝑧 ∈ 𝑦 → 𝑦 = (𝑦 ∪ {𝑧})) |
| 13 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 14 | 13 | eqvinc 3628 | . . . . . 6 ⊢ (𝑦 = (𝑦 ∪ {𝑧}) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
| 15 | 12, 14 | sylib 218 | . . . . 5 ⊢ (𝑧 ∈ 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
| 16 | 2 | bicomd 223 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) |
| 17 | 16, 3 | sylan9bb 509 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
| 18 | 17 | exlimiv 1930 | . . . . 5 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
| 19 | 15, 18 | syl 17 | . . . 4 ⊢ (𝑧 ∈ 𝑦 → (𝜒 ↔ 𝜃)) |
| 20 | 19 | biimpd 229 | . . 3 ⊢ (𝑧 ∈ 𝑦 → (𝜒 → 𝜃)) |
| 21 | 7, 20 | pm2.61d2 181 | . 2 ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) |
| 22 | 1, 2, 3, 4, 5, 21 | findcard2 9178 | 1 ⊢ (𝐴 ∈ Fin → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 ∅c0 4308 {csn 4601 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-en 8960 df-fin 8963 |
| This theorem is referenced by: findcard2d 9180 unfi 9185 ac6sfi 9292 fodomfi 9322 domunfican 9333 fodomfiOLD 9342 hashxplem 14451 hashmap 14453 hashbc 14471 hashf1lem2 14474 hashf1 14475 fsum2d 15787 fsumabs 15817 fsumrlim 15827 fsumo1 15828 fsumiun 15837 incexclem 15852 fprod2d 15997 coprmprod 16680 coprmproddvds 16682 gsum2dlem2 19952 ablfac1eulem 20055 mplcoe1 21995 mplcoe5 21998 coe1fzgsumd 22242 evl1gsumd 22295 mdetunilem9 22558 ptcmpfi 23751 tmdgsum 24033 fsumcn 24812 ovolfiniun 25454 volfiniun 25500 itgfsum 25780 dvmptfsum 25931 jensen 26951 gsumle 33092 gsumvsca1 33223 gsumvsca2 33224 finixpnum 37629 matunitlindflem1 37640 pwslnm 43118 fnchoice 45053 dvmptfprod 45974 |
| Copyright terms: Public domain | W3C validator |