![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > findcard2s | Structured version Visualization version GIF version |
Description: Variation of findcard2 9108 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
Ref | Expression |
---|---|
findcard2s.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
findcard2s.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
findcard2s.3 | ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) |
findcard2s.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
findcard2s.5 | ⊢ 𝜓 |
findcard2s.6 | ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
findcard2s | ⊢ (𝐴 ∈ Fin → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | findcard2s.1 | . 2 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
2 | findcard2s.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
3 | findcard2s.3 | . 2 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) | |
4 | findcard2s.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
5 | findcard2s.5 | . 2 ⊢ 𝜓 | |
6 | findcard2s.6 | . . . 4 ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) | |
7 | 6 | ex 413 | . . 3 ⊢ (𝑦 ∈ Fin → (¬ 𝑧 ∈ 𝑦 → (𝜒 → 𝜃))) |
8 | snssi 4768 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑦 → {𝑧} ⊆ 𝑦) | |
9 | ssequn1 4140 | . . . . . . . 8 ⊢ ({𝑧} ⊆ 𝑦 ↔ ({𝑧} ∪ 𝑦) = 𝑦) | |
10 | 8, 9 | sylib 217 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 → ({𝑧} ∪ 𝑦) = 𝑦) |
11 | uncom 4113 | . . . . . . 7 ⊢ ({𝑧} ∪ 𝑦) = (𝑦 ∪ {𝑧}) | |
12 | 10, 11 | eqtr3di 2791 | . . . . . 6 ⊢ (𝑧 ∈ 𝑦 → 𝑦 = (𝑦 ∪ {𝑧})) |
13 | vex 3449 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
14 | 13 | eqvinc 3599 | . . . . . 6 ⊢ (𝑦 = (𝑦 ∪ {𝑧}) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
15 | 12, 14 | sylib 217 | . . . . 5 ⊢ (𝑧 ∈ 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
16 | 2 | bicomd 222 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) |
17 | 16, 3 | sylan9bb 510 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
18 | 17 | exlimiv 1933 | . . . . 5 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
19 | 15, 18 | syl 17 | . . . 4 ⊢ (𝑧 ∈ 𝑦 → (𝜒 ↔ 𝜃)) |
20 | 19 | biimpd 228 | . . 3 ⊢ (𝑧 ∈ 𝑦 → (𝜒 → 𝜃)) |
21 | 7, 20 | pm2.61d2 181 | . 2 ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) |
22 | 1, 2, 3, 4, 5, 21 | findcard2 9108 | 1 ⊢ (𝐴 ∈ Fin → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∪ cun 3908 ⊆ wss 3910 ∅c0 4282 {csn 4586 Fincfn 8883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-om 7803 df-en 8884 df-fin 8887 |
This theorem is referenced by: findcard2d 9110 unfi 9116 ac6sfi 9231 domunfican 9264 fodomfi 9269 hashxplem 14333 hashmap 14335 hashbc 14350 hashf1lem2 14355 hashf1 14356 fsum2d 15656 fsumabs 15686 fsumrlim 15696 fsumo1 15697 fsumiun 15706 incexclem 15721 fprod2d 15864 coprmprod 16537 coprmproddvds 16539 gsum2dlem2 19748 ablfac1eulem 19851 mplcoe1 21438 mplcoe5 21441 coe1fzgsumd 21673 evl1gsumd 21723 mdetunilem9 21969 ptcmpfi 23164 tmdgsum 23446 fsumcn 24233 ovolfiniun 24865 volfiniun 24911 itgfsum 25191 dvmptfsum 25339 jensen 26338 gsumle 31932 gsumvsca1 32061 gsumvsca2 32062 finixpnum 36063 matunitlindflem1 36074 pwslnm 41407 fnchoice 43224 dvmptfprod 44176 |
Copyright terms: Public domain | W3C validator |