MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2s Structured version   Visualization version   GIF version

Theorem findcard2s 9165
Description: Variation of findcard2 9164 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypotheses
Ref Expression
findcard2s.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2s.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2s.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2s.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2s.5 𝜓
findcard2s.6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))
Assertion
Ref Expression
findcard2s (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜒,𝑥   𝜑,𝑦,𝑧   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard2s
StepHypRef Expression
1 findcard2s.1 . 2 (𝑥 = ∅ → (𝜑𝜓))
2 findcard2s.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
3 findcard2s.3 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
4 findcard2s.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
5 findcard2s.5 . 2 𝜓
6 findcard2s.6 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))
76ex 414 . . 3 (𝑦 ∈ Fin → (¬ 𝑧𝑦 → (𝜒𝜃)))
8 snssi 4812 . . . . . . . 8 (𝑧𝑦 → {𝑧} ⊆ 𝑦)
9 ssequn1 4181 . . . . . . . 8 ({𝑧} ⊆ 𝑦 ↔ ({𝑧} ∪ 𝑦) = 𝑦)
108, 9sylib 217 . . . . . . 7 (𝑧𝑦 → ({𝑧} ∪ 𝑦) = 𝑦)
11 uncom 4154 . . . . . . 7 ({𝑧} ∪ 𝑦) = (𝑦 ∪ {𝑧})
1210, 11eqtr3di 2788 . . . . . 6 (𝑧𝑦𝑦 = (𝑦 ∪ {𝑧}))
13 vex 3479 . . . . . . 7 𝑦 ∈ V
1413eqvinc 3638 . . . . . 6 (𝑦 = (𝑦 ∪ {𝑧}) ↔ ∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})))
1512, 14sylib 217 . . . . 5 (𝑧𝑦 → ∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})))
162bicomd 222 . . . . . . 7 (𝑥 = 𝑦 → (𝜒𝜑))
1716, 3sylan9bb 511 . . . . . 6 ((𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})) → (𝜒𝜃))
1817exlimiv 1934 . . . . 5 (∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})) → (𝜒𝜃))
1915, 18syl 17 . . . 4 (𝑧𝑦 → (𝜒𝜃))
2019biimpd 228 . . 3 (𝑧𝑦 → (𝜒𝜃))
217, 20pm2.61d2 181 . 2 (𝑦 ∈ Fin → (𝜒𝜃))
221, 2, 3, 4, 5, 21findcard2 9164 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  cun 3947  wss 3949  c0 4323  {csn 4629  Fincfn 8939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7856  df-en 8940  df-fin 8943
This theorem is referenced by:  findcard2d  9166  unfi  9172  ac6sfi  9287  domunfican  9320  fodomfi  9325  hashxplem  14393  hashmap  14395  hashbc  14412  hashf1lem2  14417  hashf1  14418  fsum2d  15717  fsumabs  15747  fsumrlim  15757  fsumo1  15758  fsumiun  15767  incexclem  15782  fprod2d  15925  coprmprod  16598  coprmproddvds  16600  gsum2dlem2  19839  ablfac1eulem  19942  mplcoe1  21592  mplcoe5  21595  coe1fzgsumd  21826  evl1gsumd  21876  mdetunilem9  22122  ptcmpfi  23317  tmdgsum  23599  fsumcn  24386  ovolfiniun  25018  volfiniun  25064  itgfsum  25344  dvmptfsum  25492  jensen  26493  gsumle  32242  gsumvsca1  32371  gsumvsca2  32372  finixpnum  36473  matunitlindflem1  36484  pwslnm  41836  fnchoice  43713  dvmptfprod  44661
  Copyright terms: Public domain W3C validator