| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > findcard2s | Structured version Visualization version GIF version | ||
| Description: Variation of findcard2 9069 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
| Ref | Expression |
|---|---|
| findcard2s.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
| findcard2s.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
| findcard2s.3 | ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) |
| findcard2s.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
| findcard2s.5 | ⊢ 𝜓 |
| findcard2s.6 | ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) |
| Ref | Expression |
|---|---|
| findcard2s | ⊢ (𝐴 ∈ Fin → 𝜏) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard2s.1 | . 2 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
| 2 | findcard2s.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
| 3 | findcard2s.3 | . 2 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) | |
| 4 | findcard2s.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
| 5 | findcard2s.5 | . 2 ⊢ 𝜓 | |
| 6 | findcard2s.6 | . . . 4 ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) | |
| 7 | 6 | ex 412 | . . 3 ⊢ (𝑦 ∈ Fin → (¬ 𝑧 ∈ 𝑦 → (𝜒 → 𝜃))) |
| 8 | snssi 4758 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑦 → {𝑧} ⊆ 𝑦) | |
| 9 | ssequn1 4134 | . . . . . . . 8 ⊢ ({𝑧} ⊆ 𝑦 ↔ ({𝑧} ∪ 𝑦) = 𝑦) | |
| 10 | 8, 9 | sylib 218 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 → ({𝑧} ∪ 𝑦) = 𝑦) |
| 11 | uncom 4106 | . . . . . . 7 ⊢ ({𝑧} ∪ 𝑦) = (𝑦 ∪ {𝑧}) | |
| 12 | 10, 11 | eqtr3di 2780 | . . . . . 6 ⊢ (𝑧 ∈ 𝑦 → 𝑦 = (𝑦 ∪ {𝑧})) |
| 13 | vex 3438 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 14 | 13 | eqvinc 3602 | . . . . . 6 ⊢ (𝑦 = (𝑦 ∪ {𝑧}) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
| 15 | 12, 14 | sylib 218 | . . . . 5 ⊢ (𝑧 ∈ 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
| 16 | 2 | bicomd 223 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) |
| 17 | 16, 3 | sylan9bb 509 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
| 18 | 17 | exlimiv 1931 | . . . . 5 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
| 19 | 15, 18 | syl 17 | . . . 4 ⊢ (𝑧 ∈ 𝑦 → (𝜒 ↔ 𝜃)) |
| 20 | 19 | biimpd 229 | . . 3 ⊢ (𝑧 ∈ 𝑦 → (𝜒 → 𝜃)) |
| 21 | 7, 20 | pm2.61d2 181 | . 2 ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) |
| 22 | 1, 2, 3, 4, 5, 21 | findcard2 9069 | 1 ⊢ (𝐴 ∈ Fin → 𝜏) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ∪ cun 3898 ⊆ wss 3900 ∅c0 4281 {csn 4574 Fincfn 8864 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-om 7792 df-en 8865 df-fin 8868 |
| This theorem is referenced by: findcard2d 9071 unfi 9075 ac6sfi 9163 fodomfi 9191 domunfican 9201 fodomfiOLD 9209 hashxplem 14332 hashmap 14334 hashbc 14352 hashf1lem2 14355 hashf1 14356 fsum2d 15670 fsumabs 15700 fsumrlim 15710 fsumo1 15711 fsumiun 15720 incexclem 15735 fprod2d 15880 coprmprod 16564 coprmproddvds 16566 gsum2dlem2 19876 ablfac1eulem 19979 gsumle 20050 mplcoe1 21965 mplcoe5 21968 coe1fzgsumd 22212 evl1gsumd 22265 mdetunilem9 22528 ptcmpfi 23721 tmdgsum 24003 fsumcn 24781 ovolfiniun 25422 volfiniun 25468 itgfsum 25748 dvmptfsum 25899 jensen 26919 gsumvsca1 33185 gsumvsca2 33186 finixpnum 37624 matunitlindflem1 37635 pwslnm 43106 fnchoice 45045 dvmptfprod 45962 |
| Copyright terms: Public domain | W3C validator |