![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > findcard2s | Structured version Visualization version GIF version |
Description: Variation of findcard2 9230 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
Ref | Expression |
---|---|
findcard2s.1 | ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
findcard2s.2 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
findcard2s.3 | ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) |
findcard2s.4 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
findcard2s.5 | ⊢ 𝜓 |
findcard2s.6 | ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) |
Ref | Expression |
---|---|
findcard2s | ⊢ (𝐴 ∈ Fin → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | findcard2s.1 | . 2 ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | |
2 | findcard2s.2 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) | |
3 | findcard2s.3 | . 2 ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) | |
4 | findcard2s.4 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | |
5 | findcard2s.5 | . 2 ⊢ 𝜓 | |
6 | findcard2s.6 | . . . 4 ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) | |
7 | 6 | ex 412 | . . 3 ⊢ (𝑦 ∈ Fin → (¬ 𝑧 ∈ 𝑦 → (𝜒 → 𝜃))) |
8 | snssi 4833 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑦 → {𝑧} ⊆ 𝑦) | |
9 | ssequn1 4209 | . . . . . . . 8 ⊢ ({𝑧} ⊆ 𝑦 ↔ ({𝑧} ∪ 𝑦) = 𝑦) | |
10 | 8, 9 | sylib 218 | . . . . . . 7 ⊢ (𝑧 ∈ 𝑦 → ({𝑧} ∪ 𝑦) = 𝑦) |
11 | uncom 4181 | . . . . . . 7 ⊢ ({𝑧} ∪ 𝑦) = (𝑦 ∪ {𝑧}) | |
12 | 10, 11 | eqtr3di 2795 | . . . . . 6 ⊢ (𝑧 ∈ 𝑦 → 𝑦 = (𝑦 ∪ {𝑧})) |
13 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
14 | 13 | eqvinc 3662 | . . . . . 6 ⊢ (𝑦 = (𝑦 ∪ {𝑧}) ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
15 | 12, 14 | sylib 218 | . . . . 5 ⊢ (𝑧 ∈ 𝑦 → ∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧}))) |
16 | 2 | bicomd 223 | . . . . . . 7 ⊢ (𝑥 = 𝑦 → (𝜒 ↔ 𝜑)) |
17 | 16, 3 | sylan9bb 509 | . . . . . 6 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
18 | 17 | exlimiv 1929 | . . . . 5 ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝑥 = (𝑦 ∪ {𝑧})) → (𝜒 ↔ 𝜃)) |
19 | 15, 18 | syl 17 | . . . 4 ⊢ (𝑧 ∈ 𝑦 → (𝜒 ↔ 𝜃)) |
20 | 19 | biimpd 229 | . . 3 ⊢ (𝑧 ∈ 𝑦 → (𝜒 → 𝜃)) |
21 | 7, 20 | pm2.61d2 181 | . 2 ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) |
22 | 1, 2, 3, 4, 5, 21 | findcard2 9230 | 1 ⊢ (𝐴 ∈ Fin → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 ∅c0 4352 {csn 4648 Fincfn 9003 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-en 9004 df-fin 9007 |
This theorem is referenced by: findcard2d 9232 unfi 9238 ac6sfi 9348 fodomfi 9378 domunfican 9389 fodomfiOLD 9398 hashxplem 14482 hashmap 14484 hashbc 14502 hashf1lem2 14505 hashf1 14506 fsum2d 15819 fsumabs 15849 fsumrlim 15859 fsumo1 15860 fsumiun 15869 incexclem 15884 fprod2d 16029 coprmprod 16708 coprmproddvds 16710 gsum2dlem2 20013 ablfac1eulem 20116 mplcoe1 22078 mplcoe5 22081 coe1fzgsumd 22329 evl1gsumd 22382 mdetunilem9 22647 ptcmpfi 23842 tmdgsum 24124 fsumcn 24913 ovolfiniun 25555 volfiniun 25601 itgfsum 25882 dvmptfsum 26033 jensen 27050 gsumle 33074 gsumvsca1 33205 gsumvsca2 33206 finixpnum 37565 matunitlindflem1 37576 pwslnm 43051 fnchoice 44929 dvmptfprod 45866 |
Copyright terms: Public domain | W3C validator |