MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findcard2s Structured version   Visualization version   GIF version

Theorem findcard2s 9179
Description: Variation of findcard2 9178 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.)
Hypotheses
Ref Expression
findcard2s.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2s.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2s.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2s.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2s.5 𝜓
findcard2s.6 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))
Assertion
Ref Expression
findcard2s (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝜒,𝑥   𝜑,𝑦,𝑧   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard2s
StepHypRef Expression
1 findcard2s.1 . 2 (𝑥 = ∅ → (𝜑𝜓))
2 findcard2s.2 . 2 (𝑥 = 𝑦 → (𝜑𝜒))
3 findcard2s.3 . 2 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
4 findcard2s.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
5 findcard2s.5 . 2 𝜓
6 findcard2s.6 . . . 4 ((𝑦 ∈ Fin ∧ ¬ 𝑧𝑦) → (𝜒𝜃))
76ex 412 . . 3 (𝑦 ∈ Fin → (¬ 𝑧𝑦 → (𝜒𝜃)))
8 snssi 4784 . . . . . . . 8 (𝑧𝑦 → {𝑧} ⊆ 𝑦)
9 ssequn1 4161 . . . . . . . 8 ({𝑧} ⊆ 𝑦 ↔ ({𝑧} ∪ 𝑦) = 𝑦)
108, 9sylib 218 . . . . . . 7 (𝑧𝑦 → ({𝑧} ∪ 𝑦) = 𝑦)
11 uncom 4133 . . . . . . 7 ({𝑧} ∪ 𝑦) = (𝑦 ∪ {𝑧})
1210, 11eqtr3di 2785 . . . . . 6 (𝑧𝑦𝑦 = (𝑦 ∪ {𝑧}))
13 vex 3463 . . . . . . 7 𝑦 ∈ V
1413eqvinc 3628 . . . . . 6 (𝑦 = (𝑦 ∪ {𝑧}) ↔ ∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})))
1512, 14sylib 218 . . . . 5 (𝑧𝑦 → ∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})))
162bicomd 223 . . . . . . 7 (𝑥 = 𝑦 → (𝜒𝜑))
1716, 3sylan9bb 509 . . . . . 6 ((𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})) → (𝜒𝜃))
1817exlimiv 1930 . . . . 5 (∃𝑥(𝑥 = 𝑦𝑥 = (𝑦 ∪ {𝑧})) → (𝜒𝜃))
1915, 18syl 17 . . . 4 (𝑧𝑦 → (𝜒𝜃))
2019biimpd 229 . . 3 (𝑧𝑦 → (𝜒𝜃))
217, 20pm2.61d2 181 . 2 (𝑦 ∈ Fin → (𝜒𝜃))
221, 2, 3, 4, 5, 21findcard2 9178 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  cun 3924  wss 3926  c0 4308  {csn 4601  Fincfn 8959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-om 7862  df-en 8960  df-fin 8963
This theorem is referenced by:  findcard2d  9180  unfi  9185  ac6sfi  9292  fodomfi  9322  domunfican  9333  fodomfiOLD  9342  hashxplem  14451  hashmap  14453  hashbc  14471  hashf1lem2  14474  hashf1  14475  fsum2d  15787  fsumabs  15817  fsumrlim  15827  fsumo1  15828  fsumiun  15837  incexclem  15852  fprod2d  15997  coprmprod  16680  coprmproddvds  16682  gsum2dlem2  19952  ablfac1eulem  20055  mplcoe1  21995  mplcoe5  21998  coe1fzgsumd  22242  evl1gsumd  22295  mdetunilem9  22558  ptcmpfi  23751  tmdgsum  24033  fsumcn  24812  ovolfiniun  25454  volfiniun  25500  itgfsum  25780  dvmptfsum  25931  jensen  26951  gsumle  33092  gsumvsca1  33223  gsumvsca2  33224  finixpnum  37629  matunitlindflem1  37640  pwslnm  43118  fnchoice  45053  dvmptfprod  45974
  Copyright terms: Public domain W3C validator