MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findsg Structured version   Visualization version   GIF version

Theorem findsg 7893
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. The basis of this version is an arbitrary natural number 𝐵 instead of zero. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
findsg.1 (𝑥 = 𝐵 → (𝜑𝜓))
findsg.2 (𝑥 = 𝑦 → (𝜑𝜒))
findsg.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
findsg.4 (𝑥 = 𝐴 → (𝜑𝜏))
findsg.5 (𝐵 ∈ ω → 𝜓)
findsg.6 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑦) → (𝜒𝜃))
Assertion
Ref Expression
findsg (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → 𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem findsg
StepHypRef Expression
1 sseq2 3985 . . . . . . 7 (𝑥 = ∅ → (𝐵𝑥𝐵 ⊆ ∅))
21adantl 481 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝐵𝑥𝐵 ⊆ ∅))
3 eqeq2 2747 . . . . . . . 8 (𝐵 = ∅ → (𝑥 = 𝐵𝑥 = ∅))
4 findsg.1 . . . . . . . 8 (𝑥 = 𝐵 → (𝜑𝜓))
53, 4biimtrrdi 254 . . . . . . 7 (𝐵 = ∅ → (𝑥 = ∅ → (𝜑𝜓)))
65imp 406 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝜑𝜓))
72, 6imbi12d 344 . . . . 5 ((𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
81imbi1d 341 . . . . . 6 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜑)))
9 ss0 4377 . . . . . . . . 9 (𝐵 ⊆ ∅ → 𝐵 = ∅)
109con3i 154 . . . . . . . 8 𝐵 = ∅ → ¬ 𝐵 ⊆ ∅)
1110pm2.21d 121 . . . . . . 7 𝐵 = ∅ → (𝐵 ⊆ ∅ → (𝜑𝜓)))
1211pm5.74d 273 . . . . . 6 𝐵 = ∅ → ((𝐵 ⊆ ∅ → 𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
138, 12sylan9bbr 510 . . . . 5 ((¬ 𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
147, 13pm2.61ian 811 . . . 4 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
1514imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵 ⊆ ∅ → 𝜓))))
16 sseq2 3985 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
17 findsg.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
1816, 17imbi12d 344 . . . 4 (𝑥 = 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵𝑦𝜒)))
1918imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵𝑦𝜒))))
20 sseq2 3985 . . . . 5 (𝑥 = suc 𝑦 → (𝐵𝑥𝐵 ⊆ suc 𝑦))
21 findsg.3 . . . . 5 (𝑥 = suc 𝑦 → (𝜑𝜃))
2220, 21imbi12d 344 . . . 4 (𝑥 = suc 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ suc 𝑦𝜃)))
2322imbi2d 340 . . 3 (𝑥 = suc 𝑦 → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵 ⊆ suc 𝑦𝜃))))
24 sseq2 3985 . . . . 5 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
25 findsg.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
2624, 25imbi12d 344 . . . 4 (𝑥 = 𝐴 → ((𝐵𝑥𝜑) ↔ (𝐵𝐴𝜏)))
2726imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵𝐴𝜏))))
28 findsg.5 . . . 4 (𝐵 ∈ ω → 𝜓)
2928a1d 25 . . 3 (𝐵 ∈ ω → (𝐵 ⊆ ∅ → 𝜓))
30 vex 3463 . . . . . . . . . . . . . 14 𝑦 ∈ V
3130sucex 7800 . . . . . . . . . . . . 13 suc 𝑦 ∈ V
3231eqvinc 3628 . . . . . . . . . . . 12 (suc 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵))
3328, 4imbitrrid 246 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐵 ∈ ω → 𝜑))
3421biimpd 229 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝜑𝜃))
3533, 34sylan9r 508 . . . . . . . . . . . . 13 ((𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ ω → 𝜃))
3635exlimiv 1930 . . . . . . . . . . . 12 (∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ ω → 𝜃))
3732, 36sylbi 217 . . . . . . . . . . 11 (suc 𝑦 = 𝐵 → (𝐵 ∈ ω → 𝜃))
3837eqcoms 2743 . . . . . . . . . 10 (𝐵 = suc 𝑦 → (𝐵 ∈ ω → 𝜃))
3938imim2i 16 . . . . . . . . 9 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ ω → 𝜃)))
4039a1d 25 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ ω → 𝜃))))
4140com4r 94 . . . . . . 7 (𝐵 ∈ ω → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
4241adantl 481 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
43 df-ne 2933 . . . . . . . . 9 (𝐵 ≠ suc 𝑦 ↔ ¬ 𝐵 = suc 𝑦)
4443anbi2i 623 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ (𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦))
45 annim 403 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
4644, 45bitri 275 . . . . . . 7 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
47 nnon 7867 . . . . . . . . 9 (𝐵 ∈ ω → 𝐵 ∈ On)
48 nnon 7867 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ On)
49 onsssuc 6444 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦𝐵 ∈ suc 𝑦))
50 onsuc 7805 . . . . . . . . . . 11 (𝑦 ∈ On → suc 𝑦 ∈ On)
51 onelpss 6392 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ suc 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5250, 51sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5349, 52bitrd 279 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5447, 48, 53syl2anr 597 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
55 findsg.6 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑦) → (𝜒𝜃))
5655ex 412 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 → (𝜒𝜃)))
5756a1ddd 80 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 → (𝜒 → (𝐵 ⊆ suc 𝑦𝜃))))
5857a2d 29 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵𝑦𝜒) → (𝐵𝑦 → (𝐵 ⊆ suc 𝑦𝜃))))
5958com23 86 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6054, 59sylbird 260 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6146, 60biimtrrid 243 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6242, 61pm2.61d 179 . . . . 5 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃)))
6362ex 412 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6463a2d 29 . . 3 (𝑦 ∈ ω → ((𝐵 ∈ ω → (𝐵𝑦𝜒)) → (𝐵 ∈ ω → (𝐵 ⊆ suc 𝑦𝜃))))
6515, 19, 23, 27, 29, 64finds 7892 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐵𝐴𝜏)))
6665imp31 417 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wne 2932  wss 3926  c0 4308  Oncon0 6352  suc csuc 6354  ωcom 7861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-tr 5230  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-om 7862
This theorem is referenced by:  nnaordi  8630  inf3lem5  9646  ackbij2lem4  10255  sornom  10291  fin23lem15  10348  fin23lem36  10362  isf32lem1  10367  isf32lem2  10368  wunex2  10752  indpi  10921  satfsschain  35386
  Copyright terms: Public domain W3C validator