MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findsg Structured version   Visualization version   GIF version

Theorem findsg 7873
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. The basis of this version is an arbitrary natural number 𝐵 instead of zero. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
findsg.1 (𝑥 = 𝐵 → (𝜑𝜓))
findsg.2 (𝑥 = 𝑦 → (𝜑𝜒))
findsg.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
findsg.4 (𝑥 = 𝐴 → (𝜑𝜏))
findsg.5 (𝐵 ∈ ω → 𝜓)
findsg.6 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑦) → (𝜒𝜃))
Assertion
Ref Expression
findsg (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → 𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem findsg
StepHypRef Expression
1 sseq2 3973 . . . . . . 7 (𝑥 = ∅ → (𝐵𝑥𝐵 ⊆ ∅))
21adantl 481 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝐵𝑥𝐵 ⊆ ∅))
3 eqeq2 2741 . . . . . . . 8 (𝐵 = ∅ → (𝑥 = 𝐵𝑥 = ∅))
4 findsg.1 . . . . . . . 8 (𝑥 = 𝐵 → (𝜑𝜓))
53, 4biimtrrdi 254 . . . . . . 7 (𝐵 = ∅ → (𝑥 = ∅ → (𝜑𝜓)))
65imp 406 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝜑𝜓))
72, 6imbi12d 344 . . . . 5 ((𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
81imbi1d 341 . . . . . 6 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜑)))
9 ss0 4365 . . . . . . . . 9 (𝐵 ⊆ ∅ → 𝐵 = ∅)
109con3i 154 . . . . . . . 8 𝐵 = ∅ → ¬ 𝐵 ⊆ ∅)
1110pm2.21d 121 . . . . . . 7 𝐵 = ∅ → (𝐵 ⊆ ∅ → (𝜑𝜓)))
1211pm5.74d 273 . . . . . 6 𝐵 = ∅ → ((𝐵 ⊆ ∅ → 𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
138, 12sylan9bbr 510 . . . . 5 ((¬ 𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
147, 13pm2.61ian 811 . . . 4 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
1514imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵 ⊆ ∅ → 𝜓))))
16 sseq2 3973 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
17 findsg.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
1816, 17imbi12d 344 . . . 4 (𝑥 = 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵𝑦𝜒)))
1918imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵𝑦𝜒))))
20 sseq2 3973 . . . . 5 (𝑥 = suc 𝑦 → (𝐵𝑥𝐵 ⊆ suc 𝑦))
21 findsg.3 . . . . 5 (𝑥 = suc 𝑦 → (𝜑𝜃))
2220, 21imbi12d 344 . . . 4 (𝑥 = suc 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ suc 𝑦𝜃)))
2322imbi2d 340 . . 3 (𝑥 = suc 𝑦 → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵 ⊆ suc 𝑦𝜃))))
24 sseq2 3973 . . . . 5 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
25 findsg.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
2624, 25imbi12d 344 . . . 4 (𝑥 = 𝐴 → ((𝐵𝑥𝜑) ↔ (𝐵𝐴𝜏)))
2726imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵𝐴𝜏))))
28 findsg.5 . . . 4 (𝐵 ∈ ω → 𝜓)
2928a1d 25 . . 3 (𝐵 ∈ ω → (𝐵 ⊆ ∅ → 𝜓))
30 vex 3451 . . . . . . . . . . . . . 14 𝑦 ∈ V
3130sucex 7782 . . . . . . . . . . . . 13 suc 𝑦 ∈ V
3231eqvinc 3615 . . . . . . . . . . . 12 (suc 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵))
3328, 4imbitrrid 246 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐵 ∈ ω → 𝜑))
3421biimpd 229 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝜑𝜃))
3533, 34sylan9r 508 . . . . . . . . . . . . 13 ((𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ ω → 𝜃))
3635exlimiv 1930 . . . . . . . . . . . 12 (∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ ω → 𝜃))
3732, 36sylbi 217 . . . . . . . . . . 11 (suc 𝑦 = 𝐵 → (𝐵 ∈ ω → 𝜃))
3837eqcoms 2737 . . . . . . . . . 10 (𝐵 = suc 𝑦 → (𝐵 ∈ ω → 𝜃))
3938imim2i 16 . . . . . . . . 9 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ ω → 𝜃)))
4039a1d 25 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ ω → 𝜃))))
4140com4r 94 . . . . . . 7 (𝐵 ∈ ω → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
4241adantl 481 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
43 df-ne 2926 . . . . . . . . 9 (𝐵 ≠ suc 𝑦 ↔ ¬ 𝐵 = suc 𝑦)
4443anbi2i 623 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ (𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦))
45 annim 403 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
4644, 45bitri 275 . . . . . . 7 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
47 nnon 7848 . . . . . . . . 9 (𝐵 ∈ ω → 𝐵 ∈ On)
48 nnon 7848 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ On)
49 onsssuc 6424 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦𝐵 ∈ suc 𝑦))
50 onsuc 7787 . . . . . . . . . . 11 (𝑦 ∈ On → suc 𝑦 ∈ On)
51 onelpss 6372 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ suc 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5250, 51sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5349, 52bitrd 279 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5447, 48, 53syl2anr 597 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
55 findsg.6 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑦) → (𝜒𝜃))
5655ex 412 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 → (𝜒𝜃)))
5756a1ddd 80 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 → (𝜒 → (𝐵 ⊆ suc 𝑦𝜃))))
5857a2d 29 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵𝑦𝜒) → (𝐵𝑦 → (𝐵 ⊆ suc 𝑦𝜃))))
5958com23 86 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6054, 59sylbird 260 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6146, 60biimtrrid 243 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6242, 61pm2.61d 179 . . . . 5 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃)))
6362ex 412 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6463a2d 29 . . 3 (𝑦 ∈ ω → ((𝐵 ∈ ω → (𝐵𝑦𝜒)) → (𝐵 ∈ ω → (𝐵 ⊆ suc 𝑦𝜃))))
6515, 19, 23, 27, 29, 64finds 7872 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐵𝐴𝜏)))
6665imp31 417 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wss 3914  c0 4296  Oncon0 6332  suc csuc 6334  ωcom 7842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-om 7843
This theorem is referenced by:  nnaordi  8582  inf3lem5  9585  ackbij2lem4  10194  sornom  10230  fin23lem15  10287  fin23lem36  10301  isf32lem1  10306  isf32lem2  10307  wunex2  10691  indpi  10860  satfsschain  35351
  Copyright terms: Public domain W3C validator