MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  findsg Structured version   Visualization version   GIF version

Theorem findsg 7836
Description: Principle of Finite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last two are the basis and the induction step. The basis of this version is an arbitrary natural number 𝐵 instead of zero. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
findsg.1 (𝑥 = 𝐵 → (𝜑𝜓))
findsg.2 (𝑥 = 𝑦 → (𝜑𝜒))
findsg.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
findsg.4 (𝑥 = 𝐴 → (𝜑𝜏))
findsg.5 (𝐵 ∈ ω → 𝜓)
findsg.6 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑦) → (𝜒𝜃))
Assertion
Ref Expression
findsg (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → 𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem findsg
StepHypRef Expression
1 sseq2 3970 . . . . . . 7 (𝑥 = ∅ → (𝐵𝑥𝐵 ⊆ ∅))
21adantl 482 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝐵𝑥𝐵 ⊆ ∅))
3 eqeq2 2748 . . . . . . . 8 (𝐵 = ∅ → (𝑥 = 𝐵𝑥 = ∅))
4 findsg.1 . . . . . . . 8 (𝑥 = 𝐵 → (𝜑𝜓))
53, 4syl6bir 253 . . . . . . 7 (𝐵 = ∅ → (𝑥 = ∅ → (𝜑𝜓)))
65imp 407 . . . . . 6 ((𝐵 = ∅ ∧ 𝑥 = ∅) → (𝜑𝜓))
72, 6imbi12d 344 . . . . 5 ((𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
81imbi1d 341 . . . . . 6 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜑)))
9 ss0 4358 . . . . . . . . 9 (𝐵 ⊆ ∅ → 𝐵 = ∅)
109con3i 154 . . . . . . . 8 𝐵 = ∅ → ¬ 𝐵 ⊆ ∅)
1110pm2.21d 121 . . . . . . 7 𝐵 = ∅ → (𝐵 ⊆ ∅ → (𝜑𝜓)))
1211pm5.74d 272 . . . . . 6 𝐵 = ∅ → ((𝐵 ⊆ ∅ → 𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
138, 12sylan9bbr 511 . . . . 5 ((¬ 𝐵 = ∅ ∧ 𝑥 = ∅) → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
147, 13pm2.61ian 810 . . . 4 (𝑥 = ∅ → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ ∅ → 𝜓)))
1514imbi2d 340 . . 3 (𝑥 = ∅ → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵 ⊆ ∅ → 𝜓))))
16 sseq2 3970 . . . . 5 (𝑥 = 𝑦 → (𝐵𝑥𝐵𝑦))
17 findsg.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
1816, 17imbi12d 344 . . . 4 (𝑥 = 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵𝑦𝜒)))
1918imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵𝑦𝜒))))
20 sseq2 3970 . . . . 5 (𝑥 = suc 𝑦 → (𝐵𝑥𝐵 ⊆ suc 𝑦))
21 findsg.3 . . . . 5 (𝑥 = suc 𝑦 → (𝜑𝜃))
2220, 21imbi12d 344 . . . 4 (𝑥 = suc 𝑦 → ((𝐵𝑥𝜑) ↔ (𝐵 ⊆ suc 𝑦𝜃)))
2322imbi2d 340 . . 3 (𝑥 = suc 𝑦 → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵 ⊆ suc 𝑦𝜃))))
24 sseq2 3970 . . . . 5 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
25 findsg.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
2624, 25imbi12d 344 . . . 4 (𝑥 = 𝐴 → ((𝐵𝑥𝜑) ↔ (𝐵𝐴𝜏)))
2726imbi2d 340 . . 3 (𝑥 = 𝐴 → ((𝐵 ∈ ω → (𝐵𝑥𝜑)) ↔ (𝐵 ∈ ω → (𝐵𝐴𝜏))))
28 findsg.5 . . . 4 (𝐵 ∈ ω → 𝜓)
2928a1d 25 . . 3 (𝐵 ∈ ω → (𝐵 ⊆ ∅ → 𝜓))
30 vex 3449 . . . . . . . . . . . . . 14 𝑦 ∈ V
3130sucex 7741 . . . . . . . . . . . . 13 suc 𝑦 ∈ V
3231eqvinc 3599 . . . . . . . . . . . 12 (suc 𝑦 = 𝐵 ↔ ∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵))
3328, 4syl5ibr 245 . . . . . . . . . . . . . 14 (𝑥 = 𝐵 → (𝐵 ∈ ω → 𝜑))
3421biimpd 228 . . . . . . . . . . . . . 14 (𝑥 = suc 𝑦 → (𝜑𝜃))
3533, 34sylan9r 509 . . . . . . . . . . . . 13 ((𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ ω → 𝜃))
3635exlimiv 1933 . . . . . . . . . . . 12 (∃𝑥(𝑥 = suc 𝑦𝑥 = 𝐵) → (𝐵 ∈ ω → 𝜃))
3732, 36sylbi 216 . . . . . . . . . . 11 (suc 𝑦 = 𝐵 → (𝐵 ∈ ω → 𝜃))
3837eqcoms 2744 . . . . . . . . . 10 (𝐵 = suc 𝑦 → (𝐵 ∈ ω → 𝜃))
3938imim2i 16 . . . . . . . . 9 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ ω → 𝜃)))
4039a1d 25 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦 → (𝐵 ∈ ω → 𝜃))))
4140com4r 94 . . . . . . 7 (𝐵 ∈ ω → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
4241adantl 482 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
43 df-ne 2944 . . . . . . . . 9 (𝐵 ≠ suc 𝑦 ↔ ¬ 𝐵 = suc 𝑦)
4443anbi2i 623 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ (𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦))
45 annim 404 . . . . . . . 8 ((𝐵 ⊆ suc 𝑦 ∧ ¬ 𝐵 = suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
4644, 45bitri 274 . . . . . . 7 ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) ↔ ¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦))
47 nnon 7808 . . . . . . . . 9 (𝐵 ∈ ω → 𝐵 ∈ On)
48 nnon 7808 . . . . . . . . 9 (𝑦 ∈ ω → 𝑦 ∈ On)
49 onsssuc 6407 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦𝐵 ∈ suc 𝑦))
50 onsuc 7746 . . . . . . . . . . 11 (𝑦 ∈ On → suc 𝑦 ∈ On)
51 onelpss 6357 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ suc 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5250, 51sylan2 593 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 ∈ suc 𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5349, 52bitrd 278 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
5447, 48, 53syl2anr 597 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 ↔ (𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦)))
55 findsg.6 . . . . . . . . . . . 12 (((𝑦 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝑦) → (𝜒𝜃))
5655ex 413 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 → (𝜒𝜃)))
5756a1ddd 80 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 → (𝜒 → (𝐵 ⊆ suc 𝑦𝜃))))
5857a2d 29 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵𝑦𝜒) → (𝐵𝑦 → (𝐵 ⊆ suc 𝑦𝜃))))
5958com23 86 . . . . . . . 8 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (𝐵𝑦 → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6054, 59sylbird 259 . . . . . . 7 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵 ⊆ suc 𝑦𝐵 ≠ suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6146, 60biimtrrid 242 . . . . . 6 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → (¬ (𝐵 ⊆ suc 𝑦𝐵 = suc 𝑦) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6242, 61pm2.61d 179 . . . . 5 ((𝑦 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃)))
6362ex 413 . . . 4 (𝑦 ∈ ω → (𝐵 ∈ ω → ((𝐵𝑦𝜒) → (𝐵 ⊆ suc 𝑦𝜃))))
6463a2d 29 . . 3 (𝑦 ∈ ω → ((𝐵 ∈ ω → (𝐵𝑦𝜒)) → (𝐵 ∈ ω → (𝐵 ⊆ suc 𝑦𝜃))))
6515, 19, 23, 27, 29, 64finds 7835 . 2 (𝐴 ∈ ω → (𝐵 ∈ ω → (𝐵𝐴𝜏)))
6665imp31 418 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐵𝐴) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2943  wss 3910  c0 4282  Oncon0 6317  suc csuc 6319  ωcom 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-tr 5223  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-om 7803
This theorem is referenced by:  nnaordi  8565  inf3lem5  9568  ackbij2lem4  10178  sornom  10213  fin23lem15  10270  fin23lem36  10284  isf32lem1  10289  isf32lem2  10290  wunex2  10674  indpi  10843  satfsschain  33958
  Copyright terms: Public domain W3C validator