![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-tz6.12-2 | Structured version Visualization version GIF version |
Description: tz6.12-2 6908 without ax-10 2141, ax-11 2158, ax-12 2178. Improves 118 theorems. (Contributed by SN, 27-May-2025.) |
Ref | Expression |
---|---|
sn-tz6.12-2 | ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝑦)) | |
2 | breq2 5170 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝑧)) | |
3 | 1, 2 | euabsn2w 42634 | . . 3 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦}) |
4 | 3 | notbii 320 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦}) |
5 | df-fv 6581 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
6 | iotanul2 6543 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦} → (℩𝑥𝐴𝐹𝑥) = ∅) | |
7 | 5, 6 | eqtrid 2792 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦} → (𝐹‘𝐴) = ∅) |
8 | 4, 7 | sylbi 217 | 1 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∃wex 1777 ∃!weu 2571 {cab 2717 ∅c0 4352 {csn 4648 class class class wbr 5166 ℩cio 6523 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |