Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-tz6.12-2 Structured version   Visualization version   GIF version

Theorem sn-tz6.12-2 42240
Description: tz6.12-2 6884 without ax-10 2129, ax-11 2146, ax-12 2166. Improves 118 theorems. (Contributed by SN, 27-May-2025.)
Assertion
Ref Expression
sn-tz6.12-2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem sn-tz6.12-2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5153 . . . 4 (𝑥 = 𝑦 → (𝐴𝐹𝑥𝐴𝐹𝑦))
2 breq2 5153 . . . 4 (𝑥 = 𝑧 → (𝐴𝐹𝑥𝐴𝐹𝑧))
31, 2euabsn2w 42239 . . 3 (∃!𝑥 𝐴𝐹𝑥 ↔ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦})
43notbii 319 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦})
5 df-fv 6557 . . 3 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
6 iotanul2 6519 . . 3 (¬ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦} → (℩𝑥𝐴𝐹𝑥) = ∅)
75, 6eqtrid 2777 . 2 (¬ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦} → (𝐹𝐴) = ∅)
84, 7sylbi 216 1 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wex 1773  ∃!weu 2556  {cab 2702  c0 4322  {csn 4630   class class class wbr 5149  cio 6499  cfv 6549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-ne 2930  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-iota 6501  df-fv 6557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator