Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-tz6.12-2 Structured version   Visualization version   GIF version

Theorem sn-tz6.12-2 42635
Description: tz6.12-2 6908 without ax-10 2141, ax-11 2158, ax-12 2178. Improves 118 theorems. (Contributed by SN, 27-May-2025.)
Assertion
Ref Expression
sn-tz6.12-2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem sn-tz6.12-2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . . . 4 (𝑥 = 𝑦 → (𝐴𝐹𝑥𝐴𝐹𝑦))
2 breq2 5170 . . . 4 (𝑥 = 𝑧 → (𝐴𝐹𝑥𝐴𝐹𝑧))
31, 2euabsn2w 42634 . . 3 (∃!𝑥 𝐴𝐹𝑥 ↔ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦})
43notbii 320 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦})
5 df-fv 6581 . . 3 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
6 iotanul2 6543 . . 3 (¬ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦} → (℩𝑥𝐴𝐹𝑥) = ∅)
75, 6eqtrid 2792 . 2 (¬ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦} → (𝐹𝐴) = ∅)
84, 7sylbi 217 1 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wex 1777  ∃!weu 2571  {cab 2717  c0 4352  {csn 4648   class class class wbr 5166  cio 6523  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-iota 6525  df-fv 6581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator