![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-tz6.12-2 | Structured version Visualization version GIF version |
Description: tz6.12-2 6895 without ax-10 2139, ax-11 2155, ax-12 2175. Improves 118 theorems. (Contributed by SN, 27-May-2025.) |
Ref | Expression |
---|---|
sn-tz6.12-2 | ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5152 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝑦)) | |
2 | breq2 5152 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝑧)) | |
3 | 1, 2 | euabsn2w 42666 | . . 3 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦}) |
4 | 3 | notbii 320 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦}) |
5 | df-fv 6571 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
6 | iotanul2 6533 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦} → (℩𝑥𝐴𝐹𝑥) = ∅) | |
7 | 5, 6 | eqtrid 2787 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦} → (𝐹‘𝐴) = ∅) |
8 | 4, 7 | sylbi 217 | 1 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1537 ∃wex 1776 ∃!weu 2566 {cab 2712 ∅c0 4339 {csn 4631 class class class wbr 5148 ℩cio 6514 ‘cfv 6563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-iota 6516 df-fv 6571 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |