![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-tz6.12-2 | Structured version Visualization version GIF version |
Description: tz6.12-2 6884 without ax-10 2129, ax-11 2146, ax-12 2166. Improves 118 theorems. (Contributed by SN, 27-May-2025.) |
Ref | Expression |
---|---|
sn-tz6.12-2 | ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5153 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝑦)) | |
2 | breq2 5153 | . . . 4 ⊢ (𝑥 = 𝑧 → (𝐴𝐹𝑥 ↔ 𝐴𝐹𝑧)) | |
3 | 1, 2 | euabsn2w 42239 | . . 3 ⊢ (∃!𝑥 𝐴𝐹𝑥 ↔ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦}) |
4 | 3 | notbii 319 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦}) |
5 | df-fv 6557 | . . 3 ⊢ (𝐹‘𝐴) = (℩𝑥𝐴𝐹𝑥) | |
6 | iotanul2 6519 | . . 3 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦} → (℩𝑥𝐴𝐹𝑥) = ∅) | |
7 | 5, 6 | eqtrid 2777 | . 2 ⊢ (¬ ∃𝑦{𝑥 ∣ 𝐴𝐹𝑥} = {𝑦} → (𝐹‘𝐴) = ∅) |
8 | 4, 7 | sylbi 216 | 1 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1533 ∃wex 1773 ∃!weu 2556 {cab 2702 ∅c0 4322 {csn 4630 class class class wbr 5149 ℩cio 6499 ‘cfv 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-rab 3419 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-iota 6501 df-fv 6557 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |