Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-tz6.12-2 Structured version   Visualization version   GIF version

Theorem sn-tz6.12-2 42667
Description: tz6.12-2 6895 without ax-10 2139, ax-11 2155, ax-12 2175. Improves 118 theorems. (Contributed by SN, 27-May-2025.)
Assertion
Ref Expression
sn-tz6.12-2 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem sn-tz6.12-2
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5152 . . . 4 (𝑥 = 𝑦 → (𝐴𝐹𝑥𝐴𝐹𝑦))
2 breq2 5152 . . . 4 (𝑥 = 𝑧 → (𝐴𝐹𝑥𝐴𝐹𝑧))
31, 2euabsn2w 42666 . . 3 (∃!𝑥 𝐴𝐹𝑥 ↔ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦})
43notbii 320 . 2 (¬ ∃!𝑥 𝐴𝐹𝑥 ↔ ¬ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦})
5 df-fv 6571 . . 3 (𝐹𝐴) = (℩𝑥𝐴𝐹𝑥)
6 iotanul2 6533 . . 3 (¬ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦} → (℩𝑥𝐴𝐹𝑥) = ∅)
75, 6eqtrid 2787 . 2 (¬ ∃𝑦{𝑥𝐴𝐹𝑥} = {𝑦} → (𝐹𝐴) = ∅)
84, 7sylbi 217 1 (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹𝐴) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1537  wex 1776  ∃!weu 2566  {cab 2712  c0 4339  {csn 4631   class class class wbr 5148  cio 6514  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-iota 6516  df-fv 6571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator