MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem5 Structured version   Visualization version   GIF version

Theorem dfac5lem5 10196
Description: Lemma for dfac5 10198. (Contributed by NM, 12-Apr-2004.)
Hypotheses
Ref Expression
dfac5lem.1 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
dfac5lem.2 (𝜑 ↔ ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
dfac5lem.3 𝐵 = ( 𝐴𝑦)
Assertion
Ref Expression
dfac5lem5 (𝜑 → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
Distinct variable groups:   𝑓,,𝑡,𝑢,𝑣,𝑤,𝑥,𝑦,𝑧   𝐵,𝑓,𝑤,𝑧   𝑤,𝐴,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,)   𝐴(𝑣,𝑢,𝑡,𝑓,)   𝐵(𝑥,𝑦,𝑣,𝑢,𝑡,)

Proof of Theorem dfac5lem5
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dfac5lem.1 . . 3 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
2 dfac5lem.2 . . 3 (𝜑 ↔ ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
31, 2dfac5lem4 10195 . 2 (𝜑 → ∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
4 simpr 484 . . . . . . . . . 10 ((𝑤 ≠ ∅ ∧ 𝑤) → 𝑤)
54a1i 11 . . . . . . . . 9 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → 𝑤))
6 ineq1 4234 . . . . . . . . . . . . 13 (𝑧 = ({𝑤} × 𝑤) → (𝑧𝑦) = (({𝑤} × 𝑤) ∩ 𝑦))
76eleq2d 2830 . . . . . . . . . . . 12 (𝑧 = ({𝑤} × 𝑤) → (𝑣 ∈ (𝑧𝑦) ↔ 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦)))
87eubidv 2589 . . . . . . . . . . 11 (𝑧 = ({𝑤} × 𝑤) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦)))
98rspccv 3632 . . . . . . . . . 10 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → (({𝑤} × 𝑤) ∈ 𝐴 → ∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦)))
101dfac5lem3 10194 . . . . . . . . . 10 (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤))
11 dfac5lem1 10192 . . . . . . . . . 10 (∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
129, 10, 113imtr3g 295 . . . . . . . . 9 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
135, 12jcad 512 . . . . . . . 8 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → (𝑤 ∧ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))))
14 dfac5lem.3 . . . . . . . . . . . 12 𝐵 = ( 𝐴𝑦)
1514eleq2i 2836 . . . . . . . . . . 11 (⟨𝑤, 𝑔⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑔⟩ ∈ ( 𝐴𝑦))
16 elin 3992 . . . . . . . . . . 11 (⟨𝑤, 𝑔⟩ ∈ ( 𝐴𝑦) ↔ (⟨𝑤, 𝑔⟩ ∈ 𝐴 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
171dfac5lem2 10193 . . . . . . . . . . . . 13 (⟨𝑤, 𝑔⟩ ∈ 𝐴 ↔ (𝑤𝑔𝑤))
1817anbi1i 623 . . . . . . . . . . . 12 ((⟨𝑤, 𝑔⟩ ∈ 𝐴 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦) ↔ ((𝑤𝑔𝑤) ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
19 anass 468 . . . . . . . . . . . 12 (((𝑤𝑔𝑤) ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦) ↔ (𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2018, 19bitri 275 . . . . . . . . . . 11 ((⟨𝑤, 𝑔⟩ ∈ 𝐴 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦) ↔ (𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2115, 16, 203bitri 297 . . . . . . . . . 10 (⟨𝑤, 𝑔⟩ ∈ 𝐵 ↔ (𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2221eubii 2588 . . . . . . . . 9 (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 ↔ ∃!𝑔(𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
23 euanv 2627 . . . . . . . . 9 (∃!𝑔(𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)) ↔ (𝑤 ∧ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2422, 23bitr2i 276 . . . . . . . 8 ((𝑤 ∧ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)) ↔ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵)
2513, 24imbitrdi 251 . . . . . . 7 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵))
26 euex 2580 . . . . . . . 8 (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → ∃𝑔𝑤, 𝑔⟩ ∈ 𝐵)
27 nfeu1 2591 . . . . . . . . . 10 𝑔∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵
28 nfv 1913 . . . . . . . . . 10 𝑔(𝐵𝑤) ∈ 𝑤
2927, 28nfim 1895 . . . . . . . . 9 𝑔(∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤)
3021simprbi 496 . . . . . . . . . . 11 (⟨𝑤, 𝑔⟩ ∈ 𝐵 → (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
3130simpld 494 . . . . . . . . . 10 (⟨𝑤, 𝑔⟩ ∈ 𝐵𝑔𝑤)
32 tz6.12 6945 . . . . . . . . . . . . 13 ((⟨𝑤, 𝑔⟩ ∈ 𝐵 ∧ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵) → (𝐵𝑤) = 𝑔)
3332eleq1d 2829 . . . . . . . . . . . 12 ((⟨𝑤, 𝑔⟩ ∈ 𝐵 ∧ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵) → ((𝐵𝑤) ∈ 𝑤𝑔𝑤))
3433biimparc 479 . . . . . . . . . . 11 ((𝑔𝑤 ∧ (⟨𝑤, 𝑔⟩ ∈ 𝐵 ∧ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵)) → (𝐵𝑤) ∈ 𝑤)
3534exp32 420 . . . . . . . . . 10 (𝑔𝑤 → (⟨𝑤, 𝑔⟩ ∈ 𝐵 → (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤)))
3631, 35mpcom 38 . . . . . . . . 9 (⟨𝑤, 𝑔⟩ ∈ 𝐵 → (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤))
3729, 36exlimi 2218 . . . . . . . 8 (∃𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤))
3826, 37mpcom 38 . . . . . . 7 (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤)
3925, 38syl6 35 . . . . . 6 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → (𝐵𝑤) ∈ 𝑤))
4039expcomd 416 . . . . 5 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → (𝑤 → (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤)))
4140ralrimiv 3151 . . . 4 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ∀𝑤 (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤))
42 vex 3492 . . . . . . 7 𝑦 ∈ V
4342inex2 5336 . . . . . 6 ( 𝐴𝑦) ∈ V
4414, 43eqeltri 2840 . . . . 5 𝐵 ∈ V
45 fveq1 6919 . . . . . . . 8 (𝑓 = 𝐵 → (𝑓𝑤) = (𝐵𝑤))
4645eleq1d 2829 . . . . . . 7 (𝑓 = 𝐵 → ((𝑓𝑤) ∈ 𝑤 ↔ (𝐵𝑤) ∈ 𝑤))
4746imbi2d 340 . . . . . 6 (𝑓 = 𝐵 → ((𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) ↔ (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤)))
4847ralbidv 3184 . . . . 5 (𝑓 = 𝐵 → (∀𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) ↔ ∀𝑤 (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤)))
4944, 48spcev 3619 . . . 4 (∀𝑤 (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤) → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
5041, 49syl 17 . . 3 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
5150exlimiv 1929 . 2 (∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
523, 51syl 17 1 (𝜑 → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  ∃!weu 2571  {cab 2717  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cin 3975  c0 4352  {csn 4648  cop 4654   cuni 4931   × cxp 5698  cfv 6573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-iota 6525  df-fv 6581
This theorem is referenced by:  dfac5  10198
  Copyright terms: Public domain W3C validator