MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfac5lem5 Structured version   Visualization version   GIF version

Theorem dfac5lem5 9993
Description: Lemma for dfac5 9994. (Contributed by NM, 12-Apr-2004.)
Hypotheses
Ref Expression
dfac5lem.1 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
dfac5lem.2 𝐵 = ( 𝐴𝑦)
dfac5lem.3 (𝜑 ↔ ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
Assertion
Ref Expression
dfac5lem5 (𝜑 → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
Distinct variable groups:   𝑥,𝑓,𝑧,𝑦,𝑤,𝑣,𝑢,𝑡,   𝑧,𝐵,𝑤,𝑓   𝑥,𝐴,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,𝑓,)   𝐴(𝑣,𝑢,𝑡,𝑓,)   𝐵(𝑥,𝑦,𝑣,𝑢,𝑡,)

Proof of Theorem dfac5lem5
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 dfac5lem.1 . . 3 𝐴 = {𝑢 ∣ (𝑢 ≠ ∅ ∧ ∃𝑡 𝑢 = ({𝑡} × 𝑡))}
2 dfac5lem.2 . . 3 𝐵 = ( 𝐴𝑦)
3 dfac5lem.3 . . 3 (𝜑 ↔ ∀𝑥((∀𝑧𝑥 𝑧 ≠ ∅ ∧ ∀𝑧𝑥𝑤𝑥 (𝑧𝑤 → (𝑧𝑤) = ∅)) → ∃𝑦𝑧𝑥 ∃!𝑣 𝑣 ∈ (𝑧𝑦)))
41, 2, 3dfac5lem4 9992 . 2 (𝜑 → ∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦))
5 simpr 486 . . . . . . . . . 10 ((𝑤 ≠ ∅ ∧ 𝑤) → 𝑤)
65a1i 11 . . . . . . . . 9 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → 𝑤))
7 ineq1 4160 . . . . . . . . . . . . 13 (𝑧 = ({𝑤} × 𝑤) → (𝑧𝑦) = (({𝑤} × 𝑤) ∩ 𝑦))
87eleq2d 2823 . . . . . . . . . . . 12 (𝑧 = ({𝑤} × 𝑤) → (𝑣 ∈ (𝑧𝑦) ↔ 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦)))
98eubidv 2585 . . . . . . . . . . 11 (𝑧 = ({𝑤} × 𝑤) → (∃!𝑣 𝑣 ∈ (𝑧𝑦) ↔ ∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦)))
109rspccv 3573 . . . . . . . . . 10 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → (({𝑤} × 𝑤) ∈ 𝐴 → ∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦)))
111dfac5lem3 9991 . . . . . . . . . 10 (({𝑤} × 𝑤) ∈ 𝐴 ↔ (𝑤 ≠ ∅ ∧ 𝑤))
12 dfac5lem1 9989 . . . . . . . . . 10 (∃!𝑣 𝑣 ∈ (({𝑤} × 𝑤) ∩ 𝑦) ↔ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
1310, 11, 123imtr3g 295 . . . . . . . . 9 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
146, 13jcad 514 . . . . . . . 8 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → (𝑤 ∧ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))))
152eleq2i 2829 . . . . . . . . . . 11 (⟨𝑤, 𝑔⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑔⟩ ∈ ( 𝐴𝑦))
16 elin 3921 . . . . . . . . . . 11 (⟨𝑤, 𝑔⟩ ∈ ( 𝐴𝑦) ↔ (⟨𝑤, 𝑔⟩ ∈ 𝐴 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
171dfac5lem2 9990 . . . . . . . . . . . . 13 (⟨𝑤, 𝑔⟩ ∈ 𝐴 ↔ (𝑤𝑔𝑤))
1817anbi1i 625 . . . . . . . . . . . 12 ((⟨𝑤, 𝑔⟩ ∈ 𝐴 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦) ↔ ((𝑤𝑔𝑤) ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
19 anass 470 . . . . . . . . . . . 12 (((𝑤𝑔𝑤) ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦) ↔ (𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2018, 19bitri 275 . . . . . . . . . . 11 ((⟨𝑤, 𝑔⟩ ∈ 𝐴 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦) ↔ (𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2115, 16, 203bitri 297 . . . . . . . . . 10 (⟨𝑤, 𝑔⟩ ∈ 𝐵 ↔ (𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2221eubii 2584 . . . . . . . . 9 (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 ↔ ∃!𝑔(𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
23 euanv 2625 . . . . . . . . 9 (∃!𝑔(𝑤 ∧ (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)) ↔ (𝑤 ∧ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)))
2422, 23bitr2i 276 . . . . . . . 8 ((𝑤 ∧ ∃!𝑔(𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦)) ↔ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵)
2514, 24syl6ib 251 . . . . . . 7 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵))
26 euex 2576 . . . . . . . 8 (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → ∃𝑔𝑤, 𝑔⟩ ∈ 𝐵)
27 nfeu1 2587 . . . . . . . . . 10 𝑔∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵
28 nfv 1917 . . . . . . . . . 10 𝑔(𝐵𝑤) ∈ 𝑤
2927, 28nfim 1899 . . . . . . . . 9 𝑔(∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤)
3021simprbi 498 . . . . . . . . . . 11 (⟨𝑤, 𝑔⟩ ∈ 𝐵 → (𝑔𝑤 ∧ ⟨𝑤, 𝑔⟩ ∈ 𝑦))
3130simpld 496 . . . . . . . . . 10 (⟨𝑤, 𝑔⟩ ∈ 𝐵𝑔𝑤)
32 tz6.12 6859 . . . . . . . . . . . . 13 ((⟨𝑤, 𝑔⟩ ∈ 𝐵 ∧ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵) → (𝐵𝑤) = 𝑔)
3332eleq1d 2822 . . . . . . . . . . . 12 ((⟨𝑤, 𝑔⟩ ∈ 𝐵 ∧ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵) → ((𝐵𝑤) ∈ 𝑤𝑔𝑤))
3433biimparc 481 . . . . . . . . . . 11 ((𝑔𝑤 ∧ (⟨𝑤, 𝑔⟩ ∈ 𝐵 ∧ ∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵)) → (𝐵𝑤) ∈ 𝑤)
3534exp32 422 . . . . . . . . . 10 (𝑔𝑤 → (⟨𝑤, 𝑔⟩ ∈ 𝐵 → (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤)))
3631, 35mpcom 38 . . . . . . . . 9 (⟨𝑤, 𝑔⟩ ∈ 𝐵 → (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤))
3729, 36exlimi 2210 . . . . . . . 8 (∃𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤))
3826, 37mpcom 38 . . . . . . 7 (∃!𝑔𝑤, 𝑔⟩ ∈ 𝐵 → (𝐵𝑤) ∈ 𝑤)
3925, 38syl6 35 . . . . . 6 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ((𝑤 ≠ ∅ ∧ 𝑤) → (𝐵𝑤) ∈ 𝑤))
4039expcomd 418 . . . . 5 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → (𝑤 → (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤)))
4140ralrimiv 3140 . . . 4 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ∀𝑤 (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤))
42 vex 3447 . . . . . . 7 𝑦 ∈ V
4342inex2 5270 . . . . . 6 ( 𝐴𝑦) ∈ V
442, 43eqeltri 2834 . . . . 5 𝐵 ∈ V
45 fveq1 6833 . . . . . . . 8 (𝑓 = 𝐵 → (𝑓𝑤) = (𝐵𝑤))
4645eleq1d 2822 . . . . . . 7 (𝑓 = 𝐵 → ((𝑓𝑤) ∈ 𝑤 ↔ (𝐵𝑤) ∈ 𝑤))
4746imbi2d 341 . . . . . 6 (𝑓 = 𝐵 → ((𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) ↔ (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤)))
4847ralbidv 3172 . . . . 5 (𝑓 = 𝐵 → (∀𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤) ↔ ∀𝑤 (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤)))
4944, 48spcev 3560 . . . 4 (∀𝑤 (𝑤 ≠ ∅ → (𝐵𝑤) ∈ 𝑤) → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
5041, 49syl 17 . . 3 (∀𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
5150exlimiv 1933 . 2 (∃𝑦𝑧𝐴 ∃!𝑣 𝑣 ∈ (𝑧𝑦) → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
524, 51syl 17 1 (𝜑 → ∃𝑓𝑤 (𝑤 ≠ ∅ → (𝑓𝑤) ∈ 𝑤))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1539   = wceq 1541  wex 1781  wcel 2106  ∃!weu 2567  {cab 2714  wne 2941  wral 3062  wrex 3071  Vcvv 3443  cin 3904  c0 4277  {csn 4581  cop 4587   cuni 4860   × cxp 5625  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5251  ax-nul 5258  ax-pow 5315  ax-pr 5379  ax-un 7659
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3406  df-v 3445  df-sbc 3735  df-csb 3851  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4278  df-if 4482  df-pw 4557  df-sn 4582  df-pr 4584  df-op 4588  df-uni 4861  df-br 5101  df-opab 5163  df-xp 5633  df-rel 5634  df-cnv 5635  df-dm 5637  df-rn 5638  df-iota 6440  df-fv 6496
This theorem is referenced by:  dfac5  9994
  Copyright terms: Public domain W3C validator