Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eusv1 | Structured version Visualization version GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by NM, 14-Oct-2010.) |
Ref | Expression |
---|---|
eusv1 | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sp 2176 | . . . 4 ⊢ (∀𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴) | |
2 | sp 2176 | . . . 4 ⊢ (∀𝑥 𝑧 = 𝐴 → 𝑧 = 𝐴) | |
3 | eqtr3 2764 | . . . 4 ⊢ ((𝑦 = 𝐴 ∧ 𝑧 = 𝐴) → 𝑦 = 𝑧) | |
4 | 1, 2, 3 | syl2an 596 | . . 3 ⊢ ((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧) |
5 | 4 | gen2 1799 | . 2 ⊢ ∀𝑦∀𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧) |
6 | eqeq1 2742 | . . . 4 ⊢ (𝑦 = 𝑧 → (𝑦 = 𝐴 ↔ 𝑧 = 𝐴)) | |
7 | 6 | albidv 1923 | . . 3 ⊢ (𝑦 = 𝑧 → (∀𝑥 𝑦 = 𝐴 ↔ ∀𝑥 𝑧 = 𝐴)) |
8 | 7 | eu4 2617 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (∃𝑦∀𝑥 𝑦 = 𝐴 ∧ ∀𝑦∀𝑧((∀𝑥 𝑦 = 𝐴 ∧ ∀𝑥 𝑧 = 𝐴) → 𝑦 = 𝑧))) |
9 | 5, 8 | mpbiran2 707 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 ∃!weu 2568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2540 df-eu 2569 df-cleq 2730 |
This theorem is referenced by: eusvnfb 5316 |
Copyright terms: Public domain | W3C validator |