| Step | Hyp | Ref
| Expression |
| 1 | | euex 2577 |
. 2
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴) |
| 2 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑧 |
| 3 | | nfcsb1v 3903 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 |
| 4 | 3 | nfeq2 2917 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐴 |
| 5 | | csbeq1a 3893 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 6 | 5 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) |
| 7 | 2, 4, 6 | spcgf 3575 |
. . . . . . 7
⊢ (𝑧 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) |
| 8 | 7 | elv 3469 |
. . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴) |
| 9 | | nfcv 2899 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑤 |
| 10 | | nfcsb1v 3903 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐴 |
| 11 | 10 | nfeq2 2917 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑤 / 𝑥⦌𝐴 |
| 12 | | csbeq1a 3893 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
| 13 | 12 | eqeq2d 2747 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) |
| 14 | 9, 11, 13 | spcgf 3575 |
. . . . . . 7
⊢ (𝑤 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) |
| 15 | 14 | elv 3469 |
. . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴) |
| 16 | 8, 15 | eqtr3d 2773 |
. . . . 5
⊢
(∀𝑥 𝑦 = 𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
| 17 | 16 | alrimivv 1928 |
. . . 4
⊢
(∀𝑥 𝑦 = 𝐴 → ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
| 18 | | sbnfc2 4419 |
. . . 4
⊢
(Ⅎ𝑥𝐴 ↔ ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
| 19 | 17, 18 | sylibr 234 |
. . 3
⊢
(∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |
| 20 | 19 | exlimiv 1930 |
. 2
⊢
(∃𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |
| 21 | 1, 20 | syl 17 |
1
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |