| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | euex 2577 | . 2
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴) | 
| 2 |  | nfcv 2905 | . . . . . . . 8
⊢
Ⅎ𝑥𝑧 | 
| 3 |  | nfcsb1v 3923 | . . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 | 
| 4 | 3 | nfeq2 2923 | . . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐴 | 
| 5 |  | csbeq1a 3913 | . . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | 
| 6 | 5 | eqeq2d 2748 | . . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) | 
| 7 | 2, 4, 6 | spcgf 3591 | . . . . . . 7
⊢ (𝑧 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) | 
| 8 | 7 | elv 3485 | . . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴) | 
| 9 |  | nfcv 2905 | . . . . . . . 8
⊢
Ⅎ𝑥𝑤 | 
| 10 |  | nfcsb1v 3923 | . . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐴 | 
| 11 | 10 | nfeq2 2923 | . . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑤 / 𝑥⦌𝐴 | 
| 12 |  | csbeq1a 3913 | . . . . . . . . 9
⊢ (𝑥 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 13 | 12 | eqeq2d 2748 | . . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) | 
| 14 | 9, 11, 13 | spcgf 3591 | . . . . . . 7
⊢ (𝑤 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) | 
| 15 | 14 | elv 3485 | . . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 16 | 8, 15 | eqtr3d 2779 | . . . . 5
⊢
(∀𝑥 𝑦 = 𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 17 | 16 | alrimivv 1928 | . . . 4
⊢
(∀𝑥 𝑦 = 𝐴 → ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 18 |  | sbnfc2 4439 | . . . 4
⊢
(Ⅎ𝑥𝐴 ↔ ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | 
| 19 | 17, 18 | sylibr 234 | . . 3
⊢
(∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | 
| 20 | 19 | exlimiv 1930 | . 2
⊢
(∃𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | 
| 21 | 1, 20 | syl 17 | 1
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |