Step | Hyp | Ref
| Expression |
1 | | euex 2577 |
. 2
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴) |
2 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑧 |
3 | | nfcsb1v 3853 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑧 / 𝑥⦌𝐴 |
4 | 3 | nfeq2 2923 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑧 / 𝑥⦌𝐴 |
5 | | csbeq1a 3842 |
. . . . . . . . 9
⊢ (𝑥 = 𝑧 → 𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
6 | 5 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑥 = 𝑧 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) |
7 | 2, 4, 6 | spcgf 3520 |
. . . . . . 7
⊢ (𝑧 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴)) |
8 | 7 | elv 3428 |
. . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑧 / 𝑥⦌𝐴) |
9 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑥𝑤 |
10 | | nfcsb1v 3853 |
. . . . . . . . 9
⊢
Ⅎ𝑥⦋𝑤 / 𝑥⦌𝐴 |
11 | 10 | nfeq2 2923 |
. . . . . . . 8
⊢
Ⅎ𝑥 𝑦 = ⦋𝑤 / 𝑥⦌𝐴 |
12 | | csbeq1a 3842 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → 𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
13 | 12 | eqeq2d 2749 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → (𝑦 = 𝐴 ↔ 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) |
14 | 9, 11, 13 | spcgf 3520 |
. . . . . . 7
⊢ (𝑤 ∈ V → (∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴)) |
15 | 14 | elv 3428 |
. . . . . 6
⊢
(∀𝑥 𝑦 = 𝐴 → 𝑦 = ⦋𝑤 / 𝑥⦌𝐴) |
16 | 8, 15 | eqtr3d 2780 |
. . . . 5
⊢
(∀𝑥 𝑦 = 𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
17 | 16 | alrimivv 1932 |
. . . 4
⊢
(∀𝑥 𝑦 = 𝐴 → ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
18 | | sbnfc2 4367 |
. . . 4
⊢
(Ⅎ𝑥𝐴 ↔ ∀𝑧∀𝑤⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
19 | 17, 18 | sylibr 233 |
. . 3
⊢
(∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |
20 | 19 | exlimiv 1934 |
. 2
⊢
(∃𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |
21 | 1, 20 | syl 17 |
1
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |