Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eusvnfb | Structured version Visualization version GIF version |
Description: Two ways to say that 𝐴(𝑥) is a set expression that does not depend on 𝑥. (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusvnfb | ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eusvnf 5256 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) | |
2 | euex 2578 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴) | |
3 | eqvisset 3414 | . . . . . 6 ⊢ (𝑦 = 𝐴 → 𝐴 ∈ V) | |
4 | 3 | sps 2185 | . . . . 5 ⊢ (∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
5 | 4 | exlimiv 1936 | . . . 4 ⊢ (∃𝑦∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
6 | 2, 5 | syl 17 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → 𝐴 ∈ V) |
7 | 1, 6 | jca 515 | . 2 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
8 | isset 3410 | . . . . 5 ⊢ (𝐴 ∈ V ↔ ∃𝑦 𝑦 = 𝐴) | |
9 | nfcvd 2900 | . . . . . . . 8 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝑦) | |
10 | id 22 | . . . . . . . 8 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥𝐴) | |
11 | 9, 10 | nfeqd 2909 | . . . . . . 7 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
12 | 11 | nf5rd 2197 | . . . . . 6 ⊢ (Ⅎ𝑥𝐴 → (𝑦 = 𝐴 → ∀𝑥 𝑦 = 𝐴)) |
13 | 12 | eximdv 1923 | . . . . 5 ⊢ (Ⅎ𝑥𝐴 → (∃𝑦 𝑦 = 𝐴 → ∃𝑦∀𝑥 𝑦 = 𝐴)) |
14 | 8, 13 | syl5bi 245 | . . . 4 ⊢ (Ⅎ𝑥𝐴 → (𝐴 ∈ V → ∃𝑦∀𝑥 𝑦 = 𝐴)) |
15 | 14 | imp 410 | . . 3 ⊢ ((Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V) → ∃𝑦∀𝑥 𝑦 = 𝐴) |
16 | eusv1 5255 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ ∃𝑦∀𝑥 𝑦 = 𝐴) | |
17 | 15, 16 | sylibr 237 | . 2 ⊢ ((Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V) → ∃!𝑦∀𝑥 𝑦 = 𝐴) |
18 | 7, 17 | impbii 212 | 1 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∀wal 1540 = wceq 1542 ∃wex 1786 ∈ wcel 2113 ∃!weu 2569 Ⅎwnfc 2879 Vcvv 3397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-nul 4210 |
This theorem is referenced by: eusv2nf 5259 eusv2 5260 |
Copyright terms: Public domain | W3C validator |