Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s6f Structured version   Visualization version   GIF version

Theorem ac6s6f 35611
Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.)
Hypotheses
Ref Expression
ac6s6f.1 𝐴 ∈ V
ac6s6f.2 𝑦𝜓
ac6s6f.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
ac6s6f.4 𝑥𝐴
Assertion
Ref Expression
ac6s6f 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑥,𝑦)

Proof of Theorem ac6s6f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6s6f.1 . . . . 5 𝐴 ∈ V
21isseti 3455 . . . 4 𝑧 𝑧 = 𝐴
3 ac6s6f.2 . . . . 5 𝑦𝜓
4 vex 3444 . . . . 5 𝑧 ∈ V
5 ac6s6f.3 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
63, 4, 5ac6s6 35610 . . . 4 𝑓𝑥𝑧 (∃𝑦𝜑𝜓)
72, 6exan 1863 . . 3 𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓))
8 exdistr 1955 . . 3 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) ↔ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓)))
97, 8mpbir 234 . 2 𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓))
10 nfcv 2955 . . . . 5 𝑥𝑧
11 ac6s6f.4 . . . . 5 𝑥𝐴
1210, 11raleqf 3350 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 (∃𝑦𝜑𝜓) ↔ ∀𝑥𝐴 (∃𝑦𝜑𝜓)))
1312biimpa 480 . . 3 ((𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∀𝑥𝐴 (∃𝑦𝜑𝜓))
14132eximi 1837 . 2 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
15 ax5e 1913 . 2 (∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓) → ∃𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
169, 14, 15mp2b 10 1 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wnf 1785  wcel 2111  wnfc 2936  wral 3106  Vcvv 3441  cfv 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088  ax-ac2 9874
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-en 8493  df-r1 9177  df-rank 9178  df-card 9352  df-ac 9527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator