| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ac6s6f | Structured version Visualization version GIF version | ||
| Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.) |
| Ref | Expression |
|---|---|
| ac6s6f.1 | ⊢ 𝐴 ∈ V |
| ac6s6f.2 | ⊢ Ⅎ𝑦𝜓 |
| ac6s6f.3 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
| ac6s6f.4 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| ac6s6f | ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ac6s6f.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 2 | 1 | isseti 3481 | . . . 4 ⊢ ∃𝑧 𝑧 = 𝐴 |
| 3 | ac6s6f.2 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
| 4 | vex 3467 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 5 | ac6s6f.3 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 6 | 3, 4, 5 | ac6s6 38138 | . . . 4 ⊢ ∃𝑓∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓) |
| 7 | 2, 6 | exan 1861 | . . 3 ⊢ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) |
| 8 | exdistr 1953 | . . 3 ⊢ (∃𝑧∃𝑓(𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) ↔ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓))) | |
| 9 | 7, 8 | mpbir 231 | . 2 ⊢ ∃𝑧∃𝑓(𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) |
| 10 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
| 11 | ac6s6f.4 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 12 | 10, 11 | raleqf 3336 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓))) |
| 13 | 12 | biimpa 476 | . . 3 ⊢ ((𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) → ∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) |
| 14 | 13 | 2eximi 1835 | . 2 ⊢ (∃𝑧∃𝑓(𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) → ∃𝑧∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) |
| 15 | ax5e 1911 | . 2 ⊢ (∃𝑧∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) → ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) | |
| 16 | 9, 14, 15 | mp2b 10 | 1 ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2107 Ⅎwnfc 2882 ∀wral 3050 Vcvv 3463 ‘cfv 6541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-reg 9614 ax-inf2 9663 ax-ac2 10485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-int 4927 df-iun 4973 df-iin 4974 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-se 5618 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-en 8968 df-r1 9786 df-rank 9787 df-card 9961 df-ac 10138 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |