Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s6f Structured version   Visualization version   GIF version

Theorem ac6s6f 38139
Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.)
Hypotheses
Ref Expression
ac6s6f.1 𝐴 ∈ V
ac6s6f.2 𝑦𝜓
ac6s6f.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
ac6s6f.4 𝑥𝐴
Assertion
Ref Expression
ac6s6f 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑥,𝑦)

Proof of Theorem ac6s6f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6s6f.1 . . . . 5 𝐴 ∈ V
21isseti 3481 . . . 4 𝑧 𝑧 = 𝐴
3 ac6s6f.2 . . . . 5 𝑦𝜓
4 vex 3467 . . . . 5 𝑧 ∈ V
5 ac6s6f.3 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
63, 4, 5ac6s6 38138 . . . 4 𝑓𝑥𝑧 (∃𝑦𝜑𝜓)
72, 6exan 1861 . . 3 𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓))
8 exdistr 1953 . . 3 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) ↔ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓)))
97, 8mpbir 231 . 2 𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓))
10 nfcv 2897 . . . . 5 𝑥𝑧
11 ac6s6f.4 . . . . 5 𝑥𝐴
1210, 11raleqf 3336 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 (∃𝑦𝜑𝜓) ↔ ∀𝑥𝐴 (∃𝑦𝜑𝜓)))
1312biimpa 476 . . 3 ((𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∀𝑥𝐴 (∃𝑦𝜑𝜓))
14132eximi 1835 . 2 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
15 ax5e 1911 . 2 (∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓) → ∃𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
169, 14, 15mp2b 10 1 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wex 1778  wnf 1782  wcel 2107  wnfc 2882  wral 3050  Vcvv 3463  cfv 6541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-reg 9614  ax-inf2 9663  ax-ac2 10485
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-en 8968  df-r1 9786  df-rank 9787  df-card 9961  df-ac 10138
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator