Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ac6s6f | Structured version Visualization version GIF version |
Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.) |
Ref | Expression |
---|---|
ac6s6f.1 | ⊢ 𝐴 ∈ V |
ac6s6f.2 | ⊢ Ⅎ𝑦𝜓 |
ac6s6f.3 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
ac6s6f.4 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
ac6s6f | ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6s6f.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | isseti 3445 | . . . 4 ⊢ ∃𝑧 𝑧 = 𝐴 |
3 | ac6s6f.2 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
4 | vex 3434 | . . . . 5 ⊢ 𝑧 ∈ V | |
5 | ac6s6f.3 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
6 | 3, 4, 5 | ac6s6 36309 | . . . 4 ⊢ ∃𝑓∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓) |
7 | 2, 6 | exan 1868 | . . 3 ⊢ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) |
8 | exdistr 1961 | . . 3 ⊢ (∃𝑧∃𝑓(𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) ↔ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓))) | |
9 | 7, 8 | mpbir 230 | . 2 ⊢ ∃𝑧∃𝑓(𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) |
10 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
11 | ac6s6f.4 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
12 | 10, 11 | raleqf 3330 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓))) |
13 | 12 | biimpa 476 | . . 3 ⊢ ((𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) → ∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) |
14 | 13 | 2eximi 1841 | . 2 ⊢ (∃𝑧∃𝑓(𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) → ∃𝑧∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) |
15 | ax5e 1918 | . 2 ⊢ (∃𝑧∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) → ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) | |
16 | 9, 14, 15 | mp2b 10 | 1 ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 ∃wex 1785 Ⅎwnf 1789 ∈ wcel 2109 Ⅎwnfc 2888 ∀wral 3065 Vcvv 3430 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-reg 9312 ax-inf2 9360 ax-ac2 10203 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-en 8708 df-r1 9506 df-rank 9507 df-card 9681 df-ac 9856 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |