Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ac6s6f Structured version   Visualization version   GIF version

Theorem ac6s6f 35450
Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.)
Hypotheses
Ref Expression
ac6s6f.1 𝐴 ∈ V
ac6s6f.2 𝑦𝜓
ac6s6f.3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
ac6s6f.4 𝑥𝐴
Assertion
Ref Expression
ac6s6f 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Distinct variable groups:   𝜑,𝑓   𝑥,𝑦,𝑓   𝐴,𝑓
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑓)   𝐴(𝑥,𝑦)

Proof of Theorem ac6s6f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ac6s6f.1 . . . . 5 𝐴 ∈ V
21isseti 3508 . . . 4 𝑧 𝑧 = 𝐴
3 ac6s6f.2 . . . . 5 𝑦𝜓
4 vex 3497 . . . . 5 𝑧 ∈ V
5 ac6s6f.3 . . . . 5 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
63, 4, 5ac6s6 35449 . . . 4 𝑓𝑥𝑧 (∃𝑦𝜑𝜓)
72, 6exan 1858 . . 3 𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓))
8 exdistr 1951 . . 3 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) ↔ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓𝑥𝑧 (∃𝑦𝜑𝜓)))
97, 8mpbir 233 . 2 𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓))
10 nfcv 2977 . . . . 5 𝑥𝑧
11 ac6s6f.4 . . . . 5 𝑥𝐴
1210, 11raleqf 3397 . . . 4 (𝑧 = 𝐴 → (∀𝑥𝑧 (∃𝑦𝜑𝜓) ↔ ∀𝑥𝐴 (∃𝑦𝜑𝜓)))
1312biimpa 479 . . 3 ((𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∀𝑥𝐴 (∃𝑦𝜑𝜓))
14132eximi 1832 . 2 (∃𝑧𝑓(𝑧 = 𝐴 ∧ ∀𝑥𝑧 (∃𝑦𝜑𝜓)) → ∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
15 ax5e 1909 . 2 (∃𝑧𝑓𝑥𝐴 (∃𝑦𝜑𝜓) → ∃𝑓𝑥𝐴 (∃𝑦𝜑𝜓))
169, 14, 15mp2b 10 1 𝑓𝑥𝐴 (∃𝑦𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wex 1776  wnf 1780  wcel 2110  wnfc 2961  wral 3138  Vcvv 3494  cfv 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-reg 9055  ax-inf2 9103  ax-ac2 9884
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-om 7580  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-en 8509  df-r1 9192  df-rank 9193  df-card 9367  df-ac 9541
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator