![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ac6s6f | Structured version Visualization version GIF version |
Description: Generalization of the Axiom of Choice to classes, moving the existence condition in the consequent. (Contributed by Giovanni Mascellani, 20-Aug-2018.) |
Ref | Expression |
---|---|
ac6s6f.1 | ⊢ 𝐴 ∈ V |
ac6s6f.2 | ⊢ Ⅎ𝑦𝜓 |
ac6s6f.3 | ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) |
ac6s6f.4 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
ac6s6f | ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ac6s6f.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 1 | isseti 3499 | . . . 4 ⊢ ∃𝑧 𝑧 = 𝐴 |
3 | ac6s6f.2 | . . . . 5 ⊢ Ⅎ𝑦𝜓 | |
4 | vex 3485 | . . . . 5 ⊢ 𝑧 ∈ V | |
5 | ac6s6f.3 | . . . . 5 ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) | |
6 | 3, 4, 5 | ac6s6 38173 | . . . 4 ⊢ ∃𝑓∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓) |
7 | 2, 6 | exan 1862 | . . 3 ⊢ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) |
8 | exdistr 1954 | . . 3 ⊢ (∃𝑧∃𝑓(𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) ↔ ∃𝑧(𝑧 = 𝐴 ∧ ∃𝑓∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓))) | |
9 | 7, 8 | mpbir 231 | . 2 ⊢ ∃𝑧∃𝑓(𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) |
10 | nfcv 2905 | . . . . 5 ⊢ Ⅎ𝑥𝑧 | |
11 | ac6s6f.4 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
12 | 10, 11 | raleqf 3353 | . . . 4 ⊢ (𝑧 = 𝐴 → (∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓) ↔ ∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓))) |
13 | 12 | biimpa 476 | . . 3 ⊢ ((𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) → ∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) |
14 | 13 | 2eximi 1835 | . 2 ⊢ (∃𝑧∃𝑓(𝑧 = 𝐴 ∧ ∀𝑥 ∈ 𝑧 (∃𝑦𝜑 → 𝜓)) → ∃𝑧∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) |
15 | ax5e 1912 | . 2 ⊢ (∃𝑧∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) → ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓)) | |
16 | 9, 14, 15 | mp2b 10 | 1 ⊢ ∃𝑓∀𝑥 ∈ 𝐴 (∃𝑦𝜑 → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2108 Ⅎwnfc 2890 ∀wral 3061 Vcvv 3481 ‘cfv 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-reg 9639 ax-inf2 9688 ax-ac2 10510 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-iin 5002 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-se 5646 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-isom 6578 df-riota 7395 df-ov 7441 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-en 8994 df-r1 9811 df-rank 9812 df-card 9986 df-ac 10163 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |