![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coass | Structured version Visualization version GIF version |
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
Ref | Expression |
---|---|
coass | ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relco 6138 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ∘ 𝐶) | |
2 | relco 6138 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ∘ 𝐶)) | |
3 | excom 2163 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
4 | anass 468 | . . . . 5 ⊢ (((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
5 | 4 | 2exbii 1847 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
6 | 3, 5 | bitr4i 278 | . . 3 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
7 | vex 3492 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
8 | vex 3492 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brco 5895 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) |
10 | 9 | anbi2i 622 | . . . . 5 ⊢ ((𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
11 | 10 | exbii 1846 | . . . 4 ⊢ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
12 | vex 3492 | . . . . 5 ⊢ 𝑥 ∈ V | |
13 | 12, 8 | opelco 5896 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦)) |
14 | exdistr 1954 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
15 | 11, 13, 14 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
16 | vex 3492 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
17 | 12, 16 | brco 5895 | . . . . . 6 ⊢ (𝑥(𝐵 ∘ 𝐶)𝑤 ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤)) |
18 | 17 | anbi1i 623 | . . . . 5 ⊢ ((𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
19 | 18 | exbii 1846 | . . . 4 ⊢ (∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
20 | 12, 8 | opelco 5896 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦)) |
21 | 19.41v 1949 | . . . . 5 ⊢ (∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) | |
22 | 21 | exbii 1846 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
23 | 19, 20, 22 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
24 | 6, 15, 23 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶))) |
25 | 1, 2, 24 | eqrelriiv 5814 | 1 ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 〈cop 4654 class class class wbr 5166 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-co 5709 |
This theorem is referenced by: funcoeqres 6893 fcof1oinvd 7329 tposco 8298 mapen 9207 mapfien 9477 hashfacen 14503 relexpsucnnl 15079 relexpaddnn 15100 cofuass 17953 setccatid 18151 estrccatid 18200 frmdup3lem 18901 symggrplem 18919 f1omvdco2 19490 symggen 19512 psgnunilem1 19535 gsumval3 19949 gsumzf1o 19954 gsumzmhm 19979 prds1 20346 psrass1lem 21975 pf1mpf 22377 pf1ind 22380 qtophmeo 23846 uniioombllem2 25637 cncombf 25712 motgrp 28569 pjsdi2i 32189 pjadj2coi 32236 pj3lem1 32238 pj3i 32240 fcoinver 32626 fmptco1f1o 32652 fcobij 32736 fcobijfs 32737 symgfcoeu 33075 pmtrcnel2 33083 cycpmconjv 33135 cycpmconjslem1 33147 cycpmconjs 33149 cyc3conja 33150 1arithidomlem2 33529 reprpmtf1o 34603 derangenlem 35139 subfacp1lem5 35152 erdsze2lem2 35172 pprodcnveq 35847 cocnv 37685 ltrncoidN 40085 trlcoabs2N 40679 trlcoat 40680 trlcone 40685 cdlemg46 40692 cdlemg47 40693 ltrnco4 40696 tgrpgrplem 40706 tendoplass 40740 cdlemi2 40776 cdlemk2 40789 cdlemk4 40791 cdlemk8 40795 cdlemk45 40904 cdlemk54 40915 cdlemk55a 40916 erngdvlem3 40947 erngdvlem3-rN 40955 tendocnv 40978 dvhvaddass 41054 dvhlveclem 41065 cdlemn8 41161 dihopelvalcpre 41205 dih1dimatlem0 41285 aks6d1c6lem5 42134 diophrw 42715 eldioph2 42718 mendring 43149 cortrcltrcl 43702 corclrtrcl 43703 cortrclrcl 43705 cotrclrtrcl 43706 cortrclrtrcl 43707 frege131d 43726 brcofffn 43993 brco3f1o 43995 neicvgnvo 44077 volicoff 45916 voliooicof 45917 ovolval4lem2 46571 3f1oss1 46990 gricushgr 47770 rngccatidALTV 47995 ringccatidALTV 48029 |
Copyright terms: Public domain | W3C validator |