| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coass | Structured version Visualization version GIF version | ||
| Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
| Ref | Expression |
|---|---|
| coass | ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6056 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ∘ 𝐶) | |
| 2 | relco 6056 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ∘ 𝐶)) | |
| 3 | excom 2165 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 4 | anass 468 | . . . . 5 ⊢ (((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 5 | 4 | 2exbii 1850 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 6 | 3, 5 | bitr4i 278 | . . 3 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 7 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 8 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brco 5809 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) |
| 10 | 9 | anbi2i 623 | . . . . 5 ⊢ ((𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 11 | 10 | exbii 1849 | . . . 4 ⊢ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 12 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 13 | 12, 8 | opelco 5810 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦)) |
| 14 | exdistr 1955 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 15 | 11, 13, 14 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 16 | vex 3440 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 17 | 12, 16 | brco 5809 | . . . . . 6 ⊢ (𝑥(𝐵 ∘ 𝐶)𝑤 ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤)) |
| 18 | 17 | anbi1i 624 | . . . . 5 ⊢ ((𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 19 | 18 | exbii 1849 | . . . 4 ⊢ (∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 20 | 12, 8 | opelco 5810 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦)) |
| 21 | 19.41v 1950 | . . . . 5 ⊢ (∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) | |
| 22 | 21 | exbii 1849 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 23 | 19, 20, 22 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 24 | 6, 15, 23 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶))) |
| 25 | 1, 2, 24 | eqrelriiv 5729 | 1 ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 〈cop 4579 class class class wbr 5089 ∘ ccom 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-co 5623 |
| This theorem is referenced by: funcoeqres 6794 fcof1oinvd 7227 tposco 8187 mapen 9054 mapfien 9292 hashfacen 14361 relexpsucnnl 14937 relexpaddnn 14958 cofuass 17796 setccatid 17991 estrccatid 18038 frmdup3lem 18774 symggrplem 18792 f1omvdco2 19360 symggen 19382 psgnunilem1 19405 gsumval3 19819 gsumzf1o 19824 gsumzmhm 19849 prds1 20241 psrass1lem 21869 pf1mpf 22267 pf1ind 22270 qtophmeo 23732 uniioombllem2 25511 cncombf 25586 motgrp 28521 pjsdi2i 32137 pjadj2coi 32184 pj3lem1 32186 pj3i 32188 fcoinver 32584 fmptco1f1o 32615 fcobij 32703 fcobijfs 32704 cocnvf1o 32712 symgfcoeu 33051 pmtrcnel2 33059 cycpmconjv 33111 cycpmconjslem1 33123 cycpmconjs 33125 cyc3conja 33126 1arithidomlem2 33501 mplvrpmga 33575 mplvrpmrhm 33577 reprpmtf1o 34639 derangenlem 35215 subfacp1lem5 35228 erdsze2lem2 35248 pprodcnveq 35925 cocnv 37764 ltrncoidN 40226 trlcoabs2N 40820 trlcoat 40821 trlcone 40826 cdlemg46 40833 cdlemg47 40834 ltrnco4 40837 tgrpgrplem 40847 tendoplass 40881 cdlemi2 40917 cdlemk2 40930 cdlemk4 40932 cdlemk8 40936 cdlemk45 41045 cdlemk54 41056 cdlemk55a 41057 erngdvlem3 41088 erngdvlem3-rN 41096 tendocnv 41119 dvhvaddass 41195 dvhlveclem 41206 cdlemn8 41302 dihopelvalcpre 41346 dih1dimatlem0 41426 aks6d1c6lem5 42269 diophrw 42851 eldioph2 42854 mendring 43280 cortrcltrcl 43832 corclrtrcl 43833 cortrclrcl 43835 cotrclrtrcl 43836 cortrclrtrcl 43837 frege131d 43856 brcofffn 44123 brco3f1o 44125 neicvgnvo 44207 volicoff 46092 voliooicof 46093 ovolval4lem2 46747 3f1oss1 47174 gricushgr 48016 rngccatidALTV 48371 ringccatidALTV 48405 fuco11idx 49435 |
| Copyright terms: Public domain | W3C validator |