| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coass | Structured version Visualization version GIF version | ||
| Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
| Ref | Expression |
|---|---|
| coass | ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6059 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ∘ 𝐶) | |
| 2 | relco 6059 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ∘ 𝐶)) | |
| 3 | excom 2163 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 4 | anass 468 | . . . . 5 ⊢ (((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 5 | 4 | 2exbii 1849 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 6 | 3, 5 | bitr4i 278 | . . 3 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 7 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 8 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brco 5813 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) |
| 10 | 9 | anbi2i 623 | . . . . 5 ⊢ ((𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 11 | 10 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 12 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 13 | 12, 8 | opelco 5814 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦)) |
| 14 | exdistr 1954 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 15 | 11, 13, 14 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 16 | vex 3440 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 17 | 12, 16 | brco 5813 | . . . . . 6 ⊢ (𝑥(𝐵 ∘ 𝐶)𝑤 ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤)) |
| 18 | 17 | anbi1i 624 | . . . . 5 ⊢ ((𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 19 | 18 | exbii 1848 | . . . 4 ⊢ (∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 20 | 12, 8 | opelco 5814 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦)) |
| 21 | 19.41v 1949 | . . . . 5 ⊢ (∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) | |
| 22 | 21 | exbii 1848 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 23 | 19, 20, 22 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 24 | 6, 15, 23 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶))) |
| 25 | 1, 2, 24 | eqrelriiv 5733 | 1 ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4583 class class class wbr 5092 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-xp 5625 df-rel 5626 df-co 5628 |
| This theorem is referenced by: funcoeqres 6795 fcof1oinvd 7230 tposco 8190 mapen 9058 mapfien 9298 hashfacen 14361 relexpsucnnl 14937 relexpaddnn 14958 cofuass 17796 setccatid 17991 estrccatid 18038 frmdup3lem 18740 symggrplem 18758 f1omvdco2 19327 symggen 19349 psgnunilem1 19372 gsumval3 19786 gsumzf1o 19791 gsumzmhm 19816 prds1 20208 psrass1lem 21839 pf1mpf 22237 pf1ind 22240 qtophmeo 23702 uniioombllem2 25482 cncombf 25557 motgrp 28488 pjsdi2i 32101 pjadj2coi 32148 pj3lem1 32150 pj3i 32152 fcoinver 32548 fmptco1f1o 32577 fcobij 32665 fcobijfs 32666 symgfcoeu 33025 pmtrcnel2 33033 cycpmconjv 33085 cycpmconjslem1 33097 cycpmconjs 33099 cyc3conja 33100 1arithidomlem2 33474 mplvrpmga 33548 reprpmtf1o 34600 derangenlem 35154 subfacp1lem5 35167 erdsze2lem2 35187 pprodcnveq 35867 cocnv 37715 ltrncoidN 40117 trlcoabs2N 40711 trlcoat 40712 trlcone 40717 cdlemg46 40724 cdlemg47 40725 ltrnco4 40728 tgrpgrplem 40738 tendoplass 40772 cdlemi2 40808 cdlemk2 40821 cdlemk4 40823 cdlemk8 40827 cdlemk45 40936 cdlemk54 40947 cdlemk55a 40948 erngdvlem3 40979 erngdvlem3-rN 40987 tendocnv 41010 dvhvaddass 41086 dvhlveclem 41097 cdlemn8 41193 dihopelvalcpre 41237 dih1dimatlem0 41317 aks6d1c6lem5 42160 diophrw 42742 eldioph2 42745 mendring 43171 cortrcltrcl 43723 corclrtrcl 43724 cortrclrcl 43726 cotrclrtrcl 43727 cortrclrtrcl 43728 frege131d 43747 brcofffn 44014 brco3f1o 44016 neicvgnvo 44098 volicoff 45986 voliooicof 45987 ovolval4lem2 46641 3f1oss1 47069 gricushgr 47911 rngccatidALTV 48266 ringccatidALTV 48300 fuco11idx 49330 |
| Copyright terms: Public domain | W3C validator |