| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coass | Structured version Visualization version GIF version | ||
| Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
| Ref | Expression |
|---|---|
| coass | ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6079 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ∘ 𝐶) | |
| 2 | relco 6079 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ∘ 𝐶)) | |
| 3 | excom 2163 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 4 | anass 468 | . . . . 5 ⊢ (((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 5 | 4 | 2exbii 1849 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 6 | 3, 5 | bitr4i 278 | . . 3 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 7 | vex 3451 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 8 | vex 3451 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brco 5834 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) |
| 10 | 9 | anbi2i 623 | . . . . 5 ⊢ ((𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 11 | 10 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 12 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 13 | 12, 8 | opelco 5835 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦)) |
| 14 | exdistr 1954 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 15 | 11, 13, 14 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 16 | vex 3451 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 17 | 12, 16 | brco 5834 | . . . . . 6 ⊢ (𝑥(𝐵 ∘ 𝐶)𝑤 ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤)) |
| 18 | 17 | anbi1i 624 | . . . . 5 ⊢ ((𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 19 | 18 | exbii 1848 | . . . 4 ⊢ (∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 20 | 12, 8 | opelco 5835 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦)) |
| 21 | 19.41v 1949 | . . . . 5 ⊢ (∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) | |
| 22 | 21 | exbii 1848 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 23 | 19, 20, 22 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 24 | 6, 15, 23 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶))) |
| 25 | 1, 2, 24 | eqrelriiv 5753 | 1 ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 〈cop 4595 class class class wbr 5107 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-co 5647 |
| This theorem is referenced by: funcoeqres 6831 fcof1oinvd 7268 tposco 8236 mapen 9105 mapfien 9359 hashfacen 14419 relexpsucnnl 14996 relexpaddnn 15017 cofuass 17851 setccatid 18046 estrccatid 18093 frmdup3lem 18793 symggrplem 18811 f1omvdco2 19378 symggen 19400 psgnunilem1 19423 gsumval3 19837 gsumzf1o 19842 gsumzmhm 19867 prds1 20232 psrass1lem 21841 pf1mpf 22239 pf1ind 22242 qtophmeo 23704 uniioombllem2 25484 cncombf 25559 motgrp 28470 pjsdi2i 32086 pjadj2coi 32133 pj3lem1 32135 pj3i 32137 fcoinver 32533 fmptco1f1o 32557 fcobij 32645 fcobijfs 32646 symgfcoeu 33039 pmtrcnel2 33047 cycpmconjv 33099 cycpmconjslem1 33111 cycpmconjs 33113 cyc3conja 33114 1arithidomlem2 33507 reprpmtf1o 34617 derangenlem 35158 subfacp1lem5 35171 erdsze2lem2 35191 pprodcnveq 35871 cocnv 37719 ltrncoidN 40122 trlcoabs2N 40716 trlcoat 40717 trlcone 40722 cdlemg46 40729 cdlemg47 40730 ltrnco4 40733 tgrpgrplem 40743 tendoplass 40777 cdlemi2 40813 cdlemk2 40826 cdlemk4 40828 cdlemk8 40832 cdlemk45 40941 cdlemk54 40952 cdlemk55a 40953 erngdvlem3 40984 erngdvlem3-rN 40992 tendocnv 41015 dvhvaddass 41091 dvhlveclem 41102 cdlemn8 41198 dihopelvalcpre 41242 dih1dimatlem0 41322 aks6d1c6lem5 42165 diophrw 42747 eldioph2 42750 mendring 43177 cortrcltrcl 43729 corclrtrcl 43730 cortrclrcl 43732 cotrclrtrcl 43733 cortrclrtrcl 43734 frege131d 43753 brcofffn 44020 brco3f1o 44022 neicvgnvo 44104 volicoff 45993 voliooicof 45994 ovolval4lem2 46648 3f1oss1 47076 gricushgr 47917 rngccatidALTV 48260 ringccatidALTV 48294 fuco11idx 49324 |
| Copyright terms: Public domain | W3C validator |