MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coass Structured version   Visualization version   GIF version

Theorem coass 6214
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
coass ((𝐴𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem coass
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6059 . 2 Rel ((𝐴𝐵) ∘ 𝐶)
2 relco 6059 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 excom 2163 . . . 4 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑤𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
4 anass 468 . . . . 5 (((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
542exbii 1849 . . . 4 (∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
63, 5bitr4i 278 . . 3 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
7 vex 3440 . . . . . . 7 𝑧 ∈ V
8 vex 3440 . . . . . . 7 𝑦 ∈ V
97, 8brco 5813 . . . . . 6 (𝑧(𝐴𝐵)𝑦 ↔ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦))
109anbi2i 623 . . . . 5 ((𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦) ↔ (𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
1110exbii 1848 . . . 4 (∃𝑧(𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
12 vex 3440 . . . . 5 𝑥 ∈ V
1312, 8opelco 5814 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ∃𝑧(𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦))
14 exdistr 1954 . . . 4 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
1511, 13, 143bitr4i 303 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
16 vex 3440 . . . . . . 7 𝑤 ∈ V
1712, 16brco 5813 . . . . . 6 (𝑥(𝐵𝐶)𝑤 ↔ ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤))
1817anbi1i 624 . . . . 5 ((𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
1918exbii 1848 . . . 4 (∃𝑤(𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2012, 8opelco 5814 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)) ↔ ∃𝑤(𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦))
21 19.41v 1949 . . . . 5 (∃𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2221exbii 1848 . . . 4 (∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2319, 20, 223bitr4i 303 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)) ↔ ∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
246, 15, 233bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)))
251, 2, 24eqrelriiv 5733 1 ((𝐴𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4583   class class class wbr 5092  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-co 5628
This theorem is referenced by:  funcoeqres  6795  fcof1oinvd  7230  tposco  8190  mapen  9058  mapfien  9298  hashfacen  14361  relexpsucnnl  14937  relexpaddnn  14958  cofuass  17796  setccatid  17991  estrccatid  18038  frmdup3lem  18740  symggrplem  18758  f1omvdco2  19327  symggen  19349  psgnunilem1  19372  gsumval3  19786  gsumzf1o  19791  gsumzmhm  19816  prds1  20208  psrass1lem  21839  pf1mpf  22237  pf1ind  22240  qtophmeo  23702  uniioombllem2  25482  cncombf  25557  motgrp  28488  pjsdi2i  32101  pjadj2coi  32148  pj3lem1  32150  pj3i  32152  fcoinver  32548  fmptco1f1o  32577  fcobij  32665  fcobijfs  32666  symgfcoeu  33025  pmtrcnel2  33033  cycpmconjv  33085  cycpmconjslem1  33097  cycpmconjs  33099  cyc3conja  33100  1arithidomlem2  33474  mplvrpmga  33548  reprpmtf1o  34600  derangenlem  35154  subfacp1lem5  35167  erdsze2lem2  35187  pprodcnveq  35867  cocnv  37715  ltrncoidN  40117  trlcoabs2N  40711  trlcoat  40712  trlcone  40717  cdlemg46  40724  cdlemg47  40725  ltrnco4  40728  tgrpgrplem  40738  tendoplass  40772  cdlemi2  40808  cdlemk2  40821  cdlemk4  40823  cdlemk8  40827  cdlemk45  40936  cdlemk54  40947  cdlemk55a  40948  erngdvlem3  40979  erngdvlem3-rN  40987  tendocnv  41010  dvhvaddass  41086  dvhlveclem  41097  cdlemn8  41193  dihopelvalcpre  41237  dih1dimatlem0  41317  aks6d1c6lem5  42160  diophrw  42742  eldioph2  42745  mendring  43171  cortrcltrcl  43723  corclrtrcl  43724  cortrclrcl  43726  cotrclrtrcl  43727  cortrclrtrcl  43728  frege131d  43747  brcofffn  44014  brco3f1o  44016  neicvgnvo  44098  volicoff  45986  voliooicof  45987  ovolval4lem2  46641  3f1oss1  47069  gricushgr  47911  rngccatidALTV  48266  ringccatidALTV  48300  fuco11idx  49330
  Copyright terms: Public domain W3C validator