| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coass | Structured version Visualization version GIF version | ||
| Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.) |
| Ref | Expression |
|---|---|
| coass | ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relco 6095 | . 2 ⊢ Rel ((𝐴 ∘ 𝐵) ∘ 𝐶) | |
| 2 | relco 6095 | . 2 ⊢ Rel (𝐴 ∘ (𝐵 ∘ 𝐶)) | |
| 3 | excom 2162 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 4 | anass 468 | . . . . 5 ⊢ (((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 5 | 4 | 2exbii 1849 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤∃𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 6 | 3, 5 | bitr4i 278 | . . 3 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 7 | vex 3463 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 8 | vex 3463 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 9 | 7, 8 | brco 5850 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) |
| 10 | 9 | anbi2i 623 | . . . . 5 ⊢ ((𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ (𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 11 | 10 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 12 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 13 | 12, 8 | opelco 5851 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧(𝐴 ∘ 𝐵)𝑦)) |
| 14 | exdistr 1954 | . . . 4 ⊢ (∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦)) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) | |
| 15 | 11, 13, 14 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ ∃𝑧∃𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤 ∧ 𝑤𝐴𝑦))) |
| 16 | vex 3463 | . . . . . . 7 ⊢ 𝑤 ∈ V | |
| 17 | 12, 16 | brco 5850 | . . . . . 6 ⊢ (𝑥(𝐵 ∘ 𝐶)𝑤 ↔ ∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤)) |
| 18 | 17 | anbi1i 624 | . . . . 5 ⊢ ((𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 19 | 18 | exbii 1848 | . . . 4 ⊢ (∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 20 | 12, 8 | opelco 5851 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤(𝑥(𝐵 ∘ 𝐶)𝑤 ∧ 𝑤𝐴𝑦)) |
| 21 | 19.41v 1949 | . . . . 5 ⊢ (∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) | |
| 22 | 21 | exbii 1848 | . . . 4 ⊢ (∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 23 | 19, 20, 22 | 3bitr4i 303 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶)) ↔ ∃𝑤∃𝑧((𝑥𝐶𝑧 ∧ 𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦)) |
| 24 | 6, 15, 23 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ((𝐴 ∘ 𝐵) ∘ 𝐶) ↔ 〈𝑥, 𝑦〉 ∈ (𝐴 ∘ (𝐵 ∘ 𝐶))) |
| 25 | 1, 2, 24 | eqrelriiv 5769 | 1 ⊢ ((𝐴 ∘ 𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵 ∘ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-co 5663 |
| This theorem is referenced by: funcoeqres 6848 fcof1oinvd 7285 tposco 8254 mapen 9153 mapfien 9418 hashfacen 14470 relexpsucnnl 15047 relexpaddnn 15068 cofuass 17900 setccatid 18095 estrccatid 18142 frmdup3lem 18842 symggrplem 18860 f1omvdco2 19427 symggen 19449 psgnunilem1 19472 gsumval3 19886 gsumzf1o 19891 gsumzmhm 19916 prds1 20281 psrass1lem 21890 pf1mpf 22288 pf1ind 22291 qtophmeo 23753 uniioombllem2 25534 cncombf 25609 motgrp 28468 pjsdi2i 32084 pjadj2coi 32131 pj3lem1 32133 pj3i 32135 fcoinver 32531 fmptco1f1o 32557 fcobij 32645 fcobijfs 32646 symgfcoeu 33039 pmtrcnel2 33047 cycpmconjv 33099 cycpmconjslem1 33111 cycpmconjs 33113 cyc3conja 33114 1arithidomlem2 33497 reprpmtf1o 34604 derangenlem 35139 subfacp1lem5 35152 erdsze2lem2 35172 pprodcnveq 35847 cocnv 37695 ltrncoidN 40093 trlcoabs2N 40687 trlcoat 40688 trlcone 40693 cdlemg46 40700 cdlemg47 40701 ltrnco4 40704 tgrpgrplem 40714 tendoplass 40748 cdlemi2 40784 cdlemk2 40797 cdlemk4 40799 cdlemk8 40803 cdlemk45 40912 cdlemk54 40923 cdlemk55a 40924 erngdvlem3 40955 erngdvlem3-rN 40963 tendocnv 40986 dvhvaddass 41062 dvhlveclem 41073 cdlemn8 41169 dihopelvalcpre 41213 dih1dimatlem0 41293 aks6d1c6lem5 42136 diophrw 42729 eldioph2 42732 mendring 43159 cortrcltrcl 43711 corclrtrcl 43712 cortrclrcl 43714 cotrclrtrcl 43715 cortrclrtrcl 43716 frege131d 43735 brcofffn 44002 brco3f1o 44004 neicvgnvo 44086 volicoff 45972 voliooicof 45973 ovolval4lem2 46627 3f1oss1 47052 gricushgr 47878 rngccatidALTV 48195 ringccatidALTV 48229 fuco11idx 49194 |
| Copyright terms: Public domain | W3C validator |