MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coass Structured version   Visualization version   GIF version

Theorem coass 6238
Description: Associative law for class composition. Theorem 27 of [Suppes] p. 64. Also Exercise 21 of [Enderton] p. 53. Interestingly, this law holds for any classes whatsoever, not just functions or even relations. (Contributed by NM, 27-Jan-1997.)
Assertion
Ref Expression
coass ((𝐴𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵𝐶))

Proof of Theorem coass
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relco 6079 . 2 Rel ((𝐴𝐵) ∘ 𝐶)
2 relco 6079 . 2 Rel (𝐴 ∘ (𝐵𝐶))
3 excom 2163 . . . 4 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑤𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
4 anass 468 . . . . 5 (((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
542exbii 1849 . . . 4 (∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤𝑧(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
63, 5bitr4i 278 . . 3 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
7 vex 3451 . . . . . . 7 𝑧 ∈ V
8 vex 3451 . . . . . . 7 𝑦 ∈ V
97, 8brco 5834 . . . . . 6 (𝑧(𝐴𝐵)𝑦 ↔ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦))
109anbi2i 623 . . . . 5 ((𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦) ↔ (𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
1110exbii 1848 . . . 4 (∃𝑧(𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
12 vex 3451 . . . . 5 𝑥 ∈ V
1312, 8opelco 5835 . . . 4 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ∃𝑧(𝑥𝐶𝑧𝑧(𝐴𝐵)𝑦))
14 exdistr 1954 . . . 4 (∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)) ↔ ∃𝑧(𝑥𝐶𝑧 ∧ ∃𝑤(𝑧𝐵𝑤𝑤𝐴𝑦)))
1511, 13, 143bitr4i 303 . . 3 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ∃𝑧𝑤(𝑥𝐶𝑧 ∧ (𝑧𝐵𝑤𝑤𝐴𝑦)))
16 vex 3451 . . . . . . 7 𝑤 ∈ V
1712, 16brco 5834 . . . . . 6 (𝑥(𝐵𝐶)𝑤 ↔ ∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤))
1817anbi1i 624 . . . . 5 ((𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
1918exbii 1848 . . . 4 (∃𝑤(𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2012, 8opelco 5835 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)) ↔ ∃𝑤(𝑥(𝐵𝐶)𝑤𝑤𝐴𝑦))
21 19.41v 1949 . . . . 5 (∃𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ (∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2221exbii 1848 . . . 4 (∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦) ↔ ∃𝑤(∃𝑧(𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
2319, 20, 223bitr4i 303 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)) ↔ ∃𝑤𝑧((𝑥𝐶𝑧𝑧𝐵𝑤) ∧ 𝑤𝐴𝑦))
246, 15, 233bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ ((𝐴𝐵) ∘ 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 ∘ (𝐵𝐶)))
251, 2, 24eqrelriiv 5753 1 ((𝐴𝐵) ∘ 𝐶) = (𝐴 ∘ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4595   class class class wbr 5107  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-co 5647
This theorem is referenced by:  funcoeqres  6831  fcof1oinvd  7268  tposco  8236  mapen  9105  mapfien  9359  hashfacen  14419  relexpsucnnl  14996  relexpaddnn  15017  cofuass  17851  setccatid  18046  estrccatid  18093  frmdup3lem  18793  symggrplem  18811  f1omvdco2  19378  symggen  19400  psgnunilem1  19423  gsumval3  19837  gsumzf1o  19842  gsumzmhm  19867  prds1  20232  psrass1lem  21841  pf1mpf  22239  pf1ind  22242  qtophmeo  23704  uniioombllem2  25484  cncombf  25559  motgrp  28470  pjsdi2i  32086  pjadj2coi  32133  pj3lem1  32135  pj3i  32137  fcoinver  32533  fmptco1f1o  32557  fcobij  32645  fcobijfs  32646  symgfcoeu  33039  pmtrcnel2  33047  cycpmconjv  33099  cycpmconjslem1  33111  cycpmconjs  33113  cyc3conja  33114  1arithidomlem2  33507  reprpmtf1o  34617  derangenlem  35158  subfacp1lem5  35171  erdsze2lem2  35191  pprodcnveq  35871  cocnv  37719  ltrncoidN  40122  trlcoabs2N  40716  trlcoat  40717  trlcone  40722  cdlemg46  40729  cdlemg47  40730  ltrnco4  40733  tgrpgrplem  40743  tendoplass  40777  cdlemi2  40813  cdlemk2  40826  cdlemk4  40828  cdlemk8  40832  cdlemk45  40941  cdlemk54  40952  cdlemk55a  40953  erngdvlem3  40984  erngdvlem3-rN  40992  tendocnv  41015  dvhvaddass  41091  dvhlveclem  41102  cdlemn8  41198  dihopelvalcpre  41242  dih1dimatlem0  41322  aks6d1c6lem5  42165  diophrw  42747  eldioph2  42750  mendring  43177  cortrcltrcl  43729  corclrtrcl  43730  cortrclrcl  43732  cotrclrtrcl  43733  cortrclrtrcl  43734  frege131d  43753  brcofffn  44020  brco3f1o  44022  neicvgnvo  44104  volicoff  45993  voliooicof  45994  ovolval4lem2  46648  3f1oss1  47076  gricushgr  47917  rngccatidALTV  48260  ringccatidALTV  48294  fuco11idx  49324
  Copyright terms: Public domain W3C validator