Proof of Theorem sbccomlem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | sbcex 3797 | . . 3
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 → 𝐴 ∈ V) | 
| 2 |  | sbcex 3797 | . . . 4
⊢
([𝐵 / 𝑦][𝐴 / 𝑥]𝜑 → 𝐵 ∈ V) | 
| 3 |  | sbc6g 3817 | . . . . 5
⊢ (𝐵 ∈ V → ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝐵 → [𝐴 / 𝑥]𝜑))) | 
| 4 |  | isset 3493 | . . . . . . 7
⊢ (𝐵 ∈ V ↔ ∃𝑦 𝑦 = 𝐵) | 
| 5 |  | exim 1833 | . . . . . . 7
⊢
(∀𝑦(𝑦 = 𝐵 → [𝐴 / 𝑥]𝜑) → (∃𝑦 𝑦 = 𝐵 → ∃𝑦[𝐴 / 𝑥]𝜑)) | 
| 6 | 4, 5 | biimtrid 242 | . . . . . 6
⊢
(∀𝑦(𝑦 = 𝐵 → [𝐴 / 𝑥]𝜑) → (𝐵 ∈ V → ∃𝑦[𝐴 / 𝑥]𝜑)) | 
| 7 |  | sbcex 3797 | . . . . . . 7
⊢
([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | 
| 8 | 7 | exlimiv 1929 | . . . . . 6
⊢
(∃𝑦[𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | 
| 9 | 6, 8 | syl6com 37 | . . . . 5
⊢ (𝐵 ∈ V → (∀𝑦(𝑦 = 𝐵 → [𝐴 / 𝑥]𝜑) → 𝐴 ∈ V)) | 
| 10 | 3, 9 | sylbid 240 | . . . 4
⊢ (𝐵 ∈ V → ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑 → 𝐴 ∈ V)) | 
| 11 | 2, 10 | mpcom 38 | . . 3
⊢
([𝐵 / 𝑦][𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) | 
| 12 | 1, 11 | pm5.21ni 377 | . 2
⊢ (¬
𝐴 ∈ V →
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑)) | 
| 13 |  | sbc6g 3817 | . . . . 5
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → [𝐵 / 𝑦]𝜑))) | 
| 14 |  | isset 3493 | . . . . . . 7
⊢ (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴) | 
| 15 |  | exim 1833 | . . . . . . 7
⊢
(∀𝑥(𝑥 = 𝐴 → [𝐵 / 𝑦]𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥[𝐵 / 𝑦]𝜑)) | 
| 16 | 14, 15 | biimtrid 242 | . . . . . 6
⊢
(∀𝑥(𝑥 = 𝐴 → [𝐵 / 𝑦]𝜑) → (𝐴 ∈ V → ∃𝑥[𝐵 / 𝑦]𝜑)) | 
| 17 |  | sbcex 3797 | . . . . . . 7
⊢
([𝐵 / 𝑦]𝜑 → 𝐵 ∈ V) | 
| 18 | 17 | exlimiv 1929 | . . . . . 6
⊢
(∃𝑥[𝐵 / 𝑦]𝜑 → 𝐵 ∈ V) | 
| 19 | 16, 18 | syl6com 37 | . . . . 5
⊢ (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴 → [𝐵 / 𝑦]𝜑) → 𝐵 ∈ V)) | 
| 20 | 13, 19 | sylbid 240 | . . . 4
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 → 𝐵 ∈ V)) | 
| 21 | 1, 20 | mpcom 38 | . . 3
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 → 𝐵 ∈ V) | 
| 22 | 21, 2 | pm5.21ni 377 | . 2
⊢ (¬
𝐵 ∈ V →
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑)) | 
| 23 |  | bi2.04 387 | . . . . . . . 8
⊢ ((𝑥 = 𝐴 → (𝑦 = 𝐵 → 𝜑)) ↔ (𝑦 = 𝐵 → (𝑥 = 𝐴 → 𝜑))) | 
| 24 | 23 | 2albii 1819 | . . . . . . 7
⊢
(∀𝑥∀𝑦(𝑥 = 𝐴 → (𝑦 = 𝐵 → 𝜑)) ↔ ∀𝑥∀𝑦(𝑦 = 𝐵 → (𝑥 = 𝐴 → 𝜑))) | 
| 25 |  | alcom 2158 | . . . . . . 7
⊢
(∀𝑥∀𝑦(𝑦 = 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ ∀𝑦∀𝑥(𝑦 = 𝐵 → (𝑥 = 𝐴 → 𝜑))) | 
| 26 | 24, 25 | bitri 275 | . . . . . 6
⊢
(∀𝑥∀𝑦(𝑥 = 𝐴 → (𝑦 = 𝐵 → 𝜑)) ↔ ∀𝑦∀𝑥(𝑦 = 𝐵 → (𝑥 = 𝐴 → 𝜑))) | 
| 27 |  | 19.21v 1938 | . . . . . . 7
⊢
(∀𝑦(𝑥 = 𝐴 → (𝑦 = 𝐵 → 𝜑)) ↔ (𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵 → 𝜑))) | 
| 28 | 27 | albii 1818 | . . . . . 6
⊢
(∀𝑥∀𝑦(𝑥 = 𝐴 → (𝑦 = 𝐵 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵 → 𝜑))) | 
| 29 |  | 19.21v 1938 | . . . . . . 7
⊢
(∀𝑥(𝑦 = 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ (𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 30 | 29 | albii 1818 | . . . . . 6
⊢
(∀𝑦∀𝑥(𝑦 = 𝐵 → (𝑥 = 𝐴 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 31 | 26, 28, 30 | 3bitr3i 301 | . . . . 5
⊢
(∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 32 | 31 | a1i 11 | . . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵 → 𝜑)) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) | 
| 33 |  | sbc6g 3817 | . . . . . . 7
⊢ (𝐵 ∈ V → ([𝐵 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝐵 → 𝜑))) | 
| 34 | 33 | imbi2d 340 | . . . . . 6
⊢ (𝐵 ∈ V → ((𝑥 = 𝐴 → [𝐵 / 𝑦]𝜑) ↔ (𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵 → 𝜑)))) | 
| 35 | 34 | albidv 1919 | . . . . 5
⊢ (𝐵 ∈ V → (∀𝑥(𝑥 = 𝐴 → [𝐵 / 𝑦]𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵 → 𝜑)))) | 
| 36 | 35 | adantl 481 | . . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥(𝑥 = 𝐴 → [𝐵 / 𝑦]𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵 → 𝜑)))) | 
| 37 |  | sbc6g 3817 | . . . . . . 7
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → 𝜑))) | 
| 38 | 37 | imbi2d 340 | . . . . . 6
⊢ (𝐴 ∈ V → ((𝑦 = 𝐵 → [𝐴 / 𝑥]𝜑) ↔ (𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) | 
| 39 | 38 | albidv 1919 | . . . . 5
⊢ (𝐴 ∈ V → (∀𝑦(𝑦 = 𝐵 → [𝐴 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) | 
| 40 | 39 | adantr 480 | . . . 4
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦(𝑦 = 𝐵 → [𝐴 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴 → 𝜑)))) | 
| 41 | 32, 36, 40 | 3bitr4d 311 | . . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥(𝑥 = 𝐴 → [𝐵 / 𝑦]𝜑) ↔ ∀𝑦(𝑦 = 𝐵 → [𝐴 / 𝑥]𝜑))) | 
| 42 | 13 | adantr 480 | . . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝐴 → [𝐵 / 𝑦]𝜑))) | 
| 43 | 3 | adantl 481 | . . 3
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝐵 → [𝐴 / 𝑥]𝜑))) | 
| 44 | 41, 42, 43 | 3bitr4d 311 | . 2
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑)) | 
| 45 | 12, 22, 44 | ecase 1033 | 1
⊢
([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦][𝐴 / 𝑥]𝜑) |