Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccomlem Structured version   Visualization version   GIF version

Theorem sbccomlem 3837
 Description: Lemma for sbccom 3838. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
Assertion
Ref Expression
sbccomlem ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbccomlem
StepHypRef Expression
1 excom 2170 . . . 4 (∃𝑥𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑦𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
2 exdistr 1956 . . . 4 (∃𝑥𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
3 an12 644 . . . . . . 7 ((𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑦 = 𝐵 ∧ (𝑥 = 𝐴𝜑)))
43exbii 1849 . . . . . 6 (∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑥(𝑦 = 𝐵 ∧ (𝑥 = 𝐴𝜑)))
5 19.42v 1955 . . . . . 6 (∃𝑥(𝑦 = 𝐵 ∧ (𝑥 = 𝐴𝜑)) ↔ (𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
64, 5bitri 278 . . . . 5 (∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
76exbii 1849 . . . 4 (∃𝑦𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
81, 2, 73bitr3i 304 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
9 sbc5 3786 . . 3 ([𝐴 / 𝑥]𝑦(𝑦 = 𝐵𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
10 sbc5 3786 . . 3 ([𝐵 / 𝑦]𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑦(𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
118, 9, 103bitr4i 306 . 2 ([𝐴 / 𝑥]𝑦(𝑦 = 𝐵𝜑) ↔ [𝐵 / 𝑦]𝑥(𝑥 = 𝐴𝜑))
12 sbc5 3786 . . 3 ([𝐵 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐵𝜑))
1312sbcbii 3814 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥]𝑦(𝑦 = 𝐵𝜑))
14 sbc5 3786 . . 3 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
1514sbcbii 3814 . 2 ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑[𝐵 / 𝑦]𝑥(𝑥 = 𝐴𝜑))
1611, 13, 153bitr4i 306 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781  [wsbc 3758 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-v 3482  df-sbc 3759 This theorem is referenced by:  sbccom  3838
 Copyright terms: Public domain W3C validator