MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccomlem Structured version   Visualization version   GIF version

Theorem sbccomlem 3808
Description: Lemma for sbccom 3809. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.)
Assertion
Ref Expression
sbccomlem ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbccomlem
StepHypRef Expression
1 excom 2166 . . . 4 (∃𝑥𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑦𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)))
2 exdistr 1962 . . . 4 (∃𝑥𝑦(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
3 an12 642 . . . . . . 7 ((𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑦 = 𝐵 ∧ (𝑥 = 𝐴𝜑)))
43exbii 1854 . . . . . 6 (∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑥(𝑦 = 𝐵 ∧ (𝑥 = 𝐴𝜑)))
5 19.42v 1961 . . . . . 6 (∃𝑥(𝑦 = 𝐵 ∧ (𝑥 = 𝐴𝜑)) ↔ (𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
64, 5bitri 274 . . . . 5 (∃𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ (𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
76exbii 1854 . . . 4 (∃𝑦𝑥(𝑥 = 𝐴 ∧ (𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
81, 2, 73bitr3i 301 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)) ↔ ∃𝑦(𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
9 sbc5 3748 . . 3 ([𝐴 / 𝑥]𝑦(𝑦 = 𝐵𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦(𝑦 = 𝐵𝜑)))
10 sbc5 3748 . . 3 ([𝐵 / 𝑦]𝑥(𝑥 = 𝐴𝜑) ↔ ∃𝑦(𝑦 = 𝐵 ∧ ∃𝑥(𝑥 = 𝐴𝜑)))
118, 9, 103bitr4i 303 . 2 ([𝐴 / 𝑥]𝑦(𝑦 = 𝐵𝜑) ↔ [𝐵 / 𝑦]𝑥(𝑥 = 𝐴𝜑))
12 sbc5 3748 . . 3 ([𝐵 / 𝑦]𝜑 ↔ ∃𝑦(𝑦 = 𝐵𝜑))
1312sbcbii 3781 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥]𝑦(𝑦 = 𝐵𝜑))
14 sbc5 3748 . . 3 ([𝐴 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝐴𝜑))
1514sbcbii 3781 . 2 ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑[𝐵 / 𝑦]𝑥(𝑥 = 𝐴𝜑))
1611, 13, 153bitr4i 303 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1542  wex 1786  [wsbc 3720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-sbc 3721
This theorem is referenced by:  sbccom  3809
  Copyright terms: Public domain W3C validator