MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbccomlem Structured version   Visualization version   GIF version

Theorem sbccomlem 3891
Description: Lemma for sbccom 3893. (Contributed by NM, 14-Nov-2005.) (Revised by Mario Carneiro, 18-Oct-2016.) Avoid ax-10 2141, ax-12 2178. (Revised by SN, 20-Aug-2025.)
Assertion
Ref Expression
sbccomlem ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem sbccomlem
StepHypRef Expression
1 sbcex 3814 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝐴 ∈ V)
2 sbcex 3814 . . . 4 ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑𝐵 ∈ V)
3 sbc6g 3834 . . . . 5 (𝐵 ∈ V → ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝐵[𝐴 / 𝑥]𝜑)))
4 isset 3502 . . . . . . 7 (𝐵 ∈ V ↔ ∃𝑦 𝑦 = 𝐵)
5 exim 1832 . . . . . . 7 (∀𝑦(𝑦 = 𝐵[𝐴 / 𝑥]𝜑) → (∃𝑦 𝑦 = 𝐵 → ∃𝑦[𝐴 / 𝑥]𝜑))
64, 5biimtrid 242 . . . . . 6 (∀𝑦(𝑦 = 𝐵[𝐴 / 𝑥]𝜑) → (𝐵 ∈ V → ∃𝑦[𝐴 / 𝑥]𝜑))
7 sbcex 3814 . . . . . . 7 ([𝐴 / 𝑥]𝜑𝐴 ∈ V)
87exlimiv 1929 . . . . . 6 (∃𝑦[𝐴 / 𝑥]𝜑𝐴 ∈ V)
96, 8syl6com 37 . . . . 5 (𝐵 ∈ V → (∀𝑦(𝑦 = 𝐵[𝐴 / 𝑥]𝜑) → 𝐴 ∈ V))
103, 9sylbid 240 . . . 4 (𝐵 ∈ V → ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑𝐴 ∈ V))
112, 10mpcom 38 . . 3 ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑𝐴 ∈ V)
121, 11pm5.21ni 377 . 2 𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑))
13 sbc6g 3834 . . . . 5 (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝐴[𝐵 / 𝑦]𝜑)))
14 isset 3502 . . . . . . 7 (𝐴 ∈ V ↔ ∃𝑥 𝑥 = 𝐴)
15 exim 1832 . . . . . . 7 (∀𝑥(𝑥 = 𝐴[𝐵 / 𝑦]𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥[𝐵 / 𝑦]𝜑))
1614, 15biimtrid 242 . . . . . 6 (∀𝑥(𝑥 = 𝐴[𝐵 / 𝑦]𝜑) → (𝐴 ∈ V → ∃𝑥[𝐵 / 𝑦]𝜑))
17 sbcex 3814 . . . . . . 7 ([𝐵 / 𝑦]𝜑𝐵 ∈ V)
1817exlimiv 1929 . . . . . 6 (∃𝑥[𝐵 / 𝑦]𝜑𝐵 ∈ V)
1916, 18syl6com 37 . . . . 5 (𝐴 ∈ V → (∀𝑥(𝑥 = 𝐴[𝐵 / 𝑦]𝜑) → 𝐵 ∈ V))
2013, 19sylbid 240 . . . 4 (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝐵 ∈ V))
211, 20mpcom 38 . . 3 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑𝐵 ∈ V)
2221, 2pm5.21ni 377 . 2 𝐵 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑))
23 bi2.04 387 . . . . . . . 8 ((𝑥 = 𝐴 → (𝑦 = 𝐵𝜑)) ↔ (𝑦 = 𝐵 → (𝑥 = 𝐴𝜑)))
24232albii 1818 . . . . . . 7 (∀𝑥𝑦(𝑥 = 𝐴 → (𝑦 = 𝐵𝜑)) ↔ ∀𝑥𝑦(𝑦 = 𝐵 → (𝑥 = 𝐴𝜑)))
25 alcom 2160 . . . . . . 7 (∀𝑥𝑦(𝑦 = 𝐵 → (𝑥 = 𝐴𝜑)) ↔ ∀𝑦𝑥(𝑦 = 𝐵 → (𝑥 = 𝐴𝜑)))
2624, 25bitri 275 . . . . . 6 (∀𝑥𝑦(𝑥 = 𝐴 → (𝑦 = 𝐵𝜑)) ↔ ∀𝑦𝑥(𝑦 = 𝐵 → (𝑥 = 𝐴𝜑)))
27 19.21v 1938 . . . . . . 7 (∀𝑦(𝑥 = 𝐴 → (𝑦 = 𝐵𝜑)) ↔ (𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵𝜑)))
2827albii 1817 . . . . . 6 (∀𝑥𝑦(𝑥 = 𝐴 → (𝑦 = 𝐵𝜑)) ↔ ∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵𝜑)))
29 19.21v 1938 . . . . . . 7 (∀𝑥(𝑦 = 𝐵 → (𝑥 = 𝐴𝜑)) ↔ (𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴𝜑)))
3029albii 1817 . . . . . 6 (∀𝑦𝑥(𝑦 = 𝐵 → (𝑥 = 𝐴𝜑)) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴𝜑)))
3126, 28, 303bitr3i 301 . . . . 5 (∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵𝜑)) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴𝜑)))
3231a1i 11 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵𝜑)) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
33 sbc6g 3834 . . . . . . 7 (𝐵 ∈ V → ([𝐵 / 𝑦]𝜑 ↔ ∀𝑦(𝑦 = 𝐵𝜑)))
3433imbi2d 340 . . . . . 6 (𝐵 ∈ V → ((𝑥 = 𝐴[𝐵 / 𝑦]𝜑) ↔ (𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵𝜑))))
3534albidv 1919 . . . . 5 (𝐵 ∈ V → (∀𝑥(𝑥 = 𝐴[𝐵 / 𝑦]𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵𝜑))))
3635adantl 481 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥(𝑥 = 𝐴[𝐵 / 𝑦]𝜑) ↔ ∀𝑥(𝑥 = 𝐴 → ∀𝑦(𝑦 = 𝐵𝜑))))
37 sbc6g 3834 . . . . . . 7 (𝐴 ∈ V → ([𝐴 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝐴𝜑)))
3837imbi2d 340 . . . . . 6 (𝐴 ∈ V → ((𝑦 = 𝐵[𝐴 / 𝑥]𝜑) ↔ (𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
3938albidv 1919 . . . . 5 (𝐴 ∈ V → (∀𝑦(𝑦 = 𝐵[𝐴 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
4039adantr 480 . . . 4 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦(𝑦 = 𝐵[𝐴 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝐵 → ∀𝑥(𝑥 = 𝐴𝜑))))
4132, 36, 403bitr4d 311 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑥(𝑥 = 𝐴[𝐵 / 𝑦]𝜑) ↔ ∀𝑦(𝑦 = 𝐵[𝐴 / 𝑥]𝜑)))
4213adantr 480 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ ∀𝑥(𝑥 = 𝐴[𝐵 / 𝑦]𝜑)))
433adantl 481 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐵 / 𝑦][𝐴 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝐵[𝐴 / 𝑥]𝜑)))
4441, 42, 433bitr4d 311 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑))
4512, 22, 44ecase 1033 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  [wsbc 3804
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-sbc 3805
This theorem is referenced by:  sbccom  3893
  Copyright terms: Public domain W3C validator