| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exsnrex | Structured version Visualization version GIF version | ||
| Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
| Ref | Expression |
|---|---|
| exsnrex | ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vsnid 4630 | . . . . 5 ⊢ 𝑥 ∈ {𝑥} | |
| 2 | eleq2 2818 | . . . . 5 ⊢ (𝑀 = {𝑥} → (𝑥 ∈ 𝑀 ↔ 𝑥 ∈ {𝑥})) | |
| 3 | 1, 2 | mpbiri 258 | . . . 4 ⊢ (𝑀 = {𝑥} → 𝑥 ∈ 𝑀) |
| 4 | 3 | pm4.71ri 560 | . . 3 ⊢ (𝑀 = {𝑥} ↔ (𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) |
| 5 | 4 | exbii 1848 | . 2 ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) |
| 6 | df-rex 3055 | . 2 ⊢ (∃𝑥 ∈ 𝑀 𝑀 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) | |
| 7 | 5, 6 | bitr4i 278 | 1 ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-v 3452 df-sn 4593 |
| This theorem is referenced by: frgrwopreg1 30254 frgrwopreg2 30255 |
| Copyright terms: Public domain | W3C validator |