![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exsnrex | Structured version Visualization version GIF version |
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
Ref | Expression |
---|---|
exsnrex | ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid 4671 | . . . . 5 ⊢ 𝑥 ∈ {𝑥} | |
2 | eleq2 2830 | . . . . 5 ⊢ (𝑀 = {𝑥} → (𝑥 ∈ 𝑀 ↔ 𝑥 ∈ {𝑥})) | |
3 | 1, 2 | mpbiri 258 | . . . 4 ⊢ (𝑀 = {𝑥} → 𝑥 ∈ 𝑀) |
4 | 3 | pm4.71ri 560 | . . 3 ⊢ (𝑀 = {𝑥} ↔ (𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) |
5 | 4 | exbii 1847 | . 2 ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) |
6 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝑀 𝑀 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) | |
7 | 5, 6 | bitr4i 278 | 1 ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2108 ∃wrex 3070 {csn 4634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rex 3071 df-v 3483 df-sn 4635 |
This theorem is referenced by: frgrwopreg1 30363 frgrwopreg2 30364 |
Copyright terms: Public domain | W3C validator |