MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsnrex Structured version   Visualization version   GIF version

Theorem exsnrex 4683
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
exsnrex (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})

Proof of Theorem exsnrex
StepHypRef Expression
1 vsnid 4664 . . . . 5 𝑥 ∈ {𝑥}
2 eleq2 2822 . . . . 5 (𝑀 = {𝑥} → (𝑥𝑀𝑥 ∈ {𝑥}))
31, 2mpbiri 257 . . . 4 (𝑀 = {𝑥} → 𝑥𝑀)
43pm4.71ri 561 . . 3 (𝑀 = {𝑥} ↔ (𝑥𝑀𝑀 = {𝑥}))
54exbii 1850 . 2 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
6 df-rex 3071 . 2 (∃𝑥𝑀 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
75, 6bitr4i 277 1 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wrex 3070  {csn 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rex 3071  df-v 3476  df-sn 4628
This theorem is referenced by:  frgrwopreg1  29560  frgrwopreg2  29561
  Copyright terms: Public domain W3C validator