MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsnrex Structured version   Visualization version   GIF version

Theorem exsnrex 4578
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
exsnrex (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})

Proof of Theorem exsnrex
StepHypRef Expression
1 vsnid 4562 . . . . 5 𝑥 ∈ {𝑥}
2 eleq2 2878 . . . . 5 (𝑀 = {𝑥} → (𝑥𝑀𝑥 ∈ {𝑥}))
31, 2mpbiri 261 . . . 4 (𝑀 = {𝑥} → 𝑥𝑀)
43pm4.71ri 564 . . 3 (𝑀 = {𝑥} ↔ (𝑥𝑀𝑀 = {𝑥}))
54exbii 1849 . 2 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
6 df-rex 3112 . 2 (∃𝑥𝑀 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
75, 6bitr4i 281 1 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wrex 3107  {csn 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-rex 3112  df-v 3443  df-sn 4526
This theorem is referenced by:  frgrwopreg1  28103  frgrwopreg2  28104
  Copyright terms: Public domain W3C validator