MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexreusng Structured version   Visualization version   GIF version

Theorem rexreusng 4684
Description: Restricted existential uniqueness over a singleton is equivalent to a restricted existential quantification over a singleton. (Contributed by AV, 3-Apr-2023.)
Assertion
Ref Expression
rexreusng (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ ∃!𝑥 ∈ {𝐴}𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem rexreusng
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . . . . 5 (([𝐴 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜑) → 𝐴 = 𝐴)
2 nfsbc1v 3811 . . . . . . . 8 𝑦[𝐴 / 𝑦][𝐴 / 𝑥]𝜑
3 nfv 1912 . . . . . . . 8 𝑦[𝐴 / 𝑥]𝜑
42, 3nfan 1897 . . . . . . 7 𝑦([𝐴 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)
5 nfv 1912 . . . . . . 7 𝑦 𝐴 = 𝐴
64, 5nfim 1894 . . . . . 6 𝑦(([𝐴 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜑) → 𝐴 = 𝐴)
7 sbceq1a 3802 . . . . . . . 8 (𝑦 = 𝐴 → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑦][𝐴 / 𝑥]𝜑))
8 dfsbcq2 3794 . . . . . . . 8 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
97, 8anbi12d 632 . . . . . . 7 (𝑦 = 𝐴 → (([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ ([𝐴 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
10 eqeq2 2747 . . . . . . 7 (𝑦 = 𝐴 → (𝐴 = 𝑦𝐴 = 𝐴))
119, 10imbi12d 344 . . . . . 6 (𝑦 = 𝐴 → ((([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝐴 = 𝑦) ↔ (([𝐴 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜑) → 𝐴 = 𝐴)))
126, 11ralsngf 4678 . . . . 5 (𝐴𝑉 → (∀𝑦 ∈ {𝐴} (([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝐴 = 𝑦) ↔ (([𝐴 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜑) → 𝐴 = 𝐴)))
131, 12mpbiri 258 . . . 4 (𝐴𝑉 → ∀𝑦 ∈ {𝐴} (([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝐴 = 𝑦))
14 nfcv 2903 . . . . . 6 𝑥{𝐴}
15 nfsbc1v 3811 . . . . . . . 8 𝑥[𝐴 / 𝑥]𝜑
16 nfs1v 2154 . . . . . . . 8 𝑥[𝑦 / 𝑥]𝜑
1715, 16nfan 1897 . . . . . . 7 𝑥([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑)
18 nfv 1912 . . . . . . 7 𝑥 𝐴 = 𝑦
1917, 18nfim 1894 . . . . . 6 𝑥(([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝐴 = 𝑦)
2014, 19nfralw 3309 . . . . 5 𝑥𝑦 ∈ {𝐴} (([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝐴 = 𝑦)
21 sbceq1a 3802 . . . . . . . 8 (𝑥 = 𝐴 → (𝜑[𝐴 / 𝑥]𝜑))
2221anbi1d 631 . . . . . . 7 (𝑥 = 𝐴 → ((𝜑 ∧ [𝑦 / 𝑥]𝜑) ↔ ([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑)))
23 eqeq1 2739 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = 𝑦𝐴 = 𝑦))
2422, 23imbi12d 344 . . . . . 6 (𝑥 = 𝐴 → (((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ (([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝐴 = 𝑦)))
2524ralbidv 3176 . . . . 5 (𝑥 = 𝐴 → (∀𝑦 ∈ {𝐴} ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ {𝐴} (([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝐴 = 𝑦)))
2620, 25ralsngf 4678 . . . 4 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦) ↔ ∀𝑦 ∈ {𝐴} (([𝐴 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝐴 = 𝑦)))
2713, 26mpbird 257 . . 3 (𝐴𝑉 → ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
2827biantrud 531 . 2 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))))
29 reu2 3734 . 2 (∃!𝑥 ∈ {𝐴}𝜑 ↔ (∃𝑥 ∈ {𝐴}𝜑 ∧ ∀𝑥 ∈ {𝐴}∀𝑦 ∈ {𝐴} ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
3028, 29bitr4di 289 1 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝜑 ↔ ∃!𝑥 ∈ {𝐴}𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  [wsb 2062  wcel 2106  wral 3059  wrex 3068  ∃!wreu 3376  [wsbc 3791  {csn 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-reu 3379  df-v 3480  df-sbc 3792  df-sn 4632
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator