MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg1 Structured version   Visualization version   GIF version

Theorem frgrwopreg1 27867
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreg1 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐴) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵   𝑣,𝐴,𝑤   𝑣,𝐵,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤,𝑥   𝑤,𝑉,𝑣
Allowed substitution hints:   𝐷(𝑤,𝑣)   𝐸(𝑥,𝑤)   𝐾(𝑤,𝑣)

Proof of Theorem frgrwopreg1
StepHypRef Expression
1 frgrwopreg.a . . . . 5 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
2 frgrwopreg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32fvexi 6518 . . . . 5 𝑉 ∈ V
41, 3rabex2 5097 . . . 4 𝐴 ∈ V
5 hash1snb 13599 . . . 4 (𝐴 ∈ V → ((♯‘𝐴) = 1 ↔ ∃𝑣 𝐴 = {𝑣}))
64, 5ax-mp 5 . . 3 ((♯‘𝐴) = 1 ↔ ∃𝑣 𝐴 = {𝑣})
7 exsnrex 4497 . . . . 5 (∃𝑣 𝐴 = {𝑣} ↔ ∃𝑣𝐴 𝐴 = {𝑣})
81ssrab3 3949 . . . . . . 7 𝐴𝑉
9 ssrexv 3926 . . . . . . 7 (𝐴𝑉 → (∃𝑣𝐴 𝐴 = {𝑣} → ∃𝑣𝑉 𝐴 = {𝑣}))
108, 9ax-mp 5 . . . . . 6 (∃𝑣𝐴 𝐴 = {𝑣} → ∃𝑣𝑉 𝐴 = {𝑣})
11 frgrwopreg.d . . . . . . . . 9 𝐷 = (VtxDeg‘𝐺)
12 frgrwopreg.b . . . . . . . . 9 𝐵 = (𝑉𝐴)
13 frgrwopreg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
142, 11, 1, 12, 13frgrwopregasn 27865 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉𝐴 = {𝑣}) → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
15143expia 1102 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (𝐴 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1615reximdva 3221 . . . . . 6 (𝐺 ∈ FriendGraph → (∃𝑣𝑉 𝐴 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1710, 16syl5com 31 . . . . 5 (∃𝑣𝐴 𝐴 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
187, 17sylbi 209 . . . 4 (∃𝑣 𝐴 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1918com12 32 . . 3 (𝐺 ∈ FriendGraph → (∃𝑣 𝐴 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
206, 19syl5bi 234 . 2 (𝐺 ∈ FriendGraph → ((♯‘𝐴) = 1 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2120imp 398 1 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐴) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wex 1743  wcel 2051  wral 3090  wrex 3091  {crab 3094  Vcvv 3417  cdif 3828  wss 3831  {csn 4444  {cpr 4446  cfv 6193  1c1 10342  chash 13511  Vtxcvtx 26499  Edgcedg 26550  VtxDegcvtxdg 26965   FriendGraph cfrgr 27805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-1o 7911  df-2o 7912  df-oadd 7915  df-er 8095  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-dju 9130  df-card 9168  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-nn 11446  df-2 11509  df-n0 11714  df-xnn0 11786  df-z 11800  df-uz 12065  df-xadd 12331  df-fz 12715  df-hash 13512  df-edg 26551  df-uhgr 26561  df-ushgr 26562  df-upgr 26585  df-umgr 26586  df-uspgr 26653  df-usgr 26654  df-nbgr 26833  df-vtxdg 26966  df-frgr 27806
This theorem is referenced by:  frgrregorufr0  27873
  Copyright terms: Public domain W3C validator