MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg1 Structured version   Visualization version   GIF version

Theorem frgrwopreg1 29160
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreg1 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐴) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵   𝑣,𝐴,𝑤   𝑣,𝐵,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤,𝑥   𝑤,𝑉,𝑣
Allowed substitution hints:   𝐷(𝑤,𝑣)   𝐸(𝑥,𝑤)   𝐾(𝑤,𝑣)

Proof of Theorem frgrwopreg1
StepHypRef Expression
1 frgrwopreg.a . . . . 5 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
2 frgrwopreg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32fvexi 6854 . . . . 5 𝑉 ∈ V
41, 3rabex2 5290 . . . 4 𝐴 ∈ V
5 hash1snb 14316 . . . 4 (𝐴 ∈ V → ((♯‘𝐴) = 1 ↔ ∃𝑣 𝐴 = {𝑣}))
64, 5ax-mp 5 . . 3 ((♯‘𝐴) = 1 ↔ ∃𝑣 𝐴 = {𝑣})
7 exsnrex 4640 . . . . 5 (∃𝑣 𝐴 = {𝑣} ↔ ∃𝑣𝐴 𝐴 = {𝑣})
81ssrab3 4039 . . . . . . 7 𝐴𝑉
9 ssrexv 4010 . . . . . . 7 (𝐴𝑉 → (∃𝑣𝐴 𝐴 = {𝑣} → ∃𝑣𝑉 𝐴 = {𝑣}))
108, 9ax-mp 5 . . . . . 6 (∃𝑣𝐴 𝐴 = {𝑣} → ∃𝑣𝑉 𝐴 = {𝑣})
11 frgrwopreg.d . . . . . . . . 9 𝐷 = (VtxDeg‘𝐺)
12 frgrwopreg.b . . . . . . . . 9 𝐵 = (𝑉𝐴)
13 frgrwopreg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
142, 11, 1, 12, 13frgrwopregasn 29158 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉𝐴 = {𝑣}) → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
15143expia 1121 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (𝐴 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1615reximdva 3164 . . . . . 6 (𝐺 ∈ FriendGraph → (∃𝑣𝑉 𝐴 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1710, 16syl5com 31 . . . . 5 (∃𝑣𝐴 𝐴 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
187, 17sylbi 216 . . . 4 (∃𝑣 𝐴 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1918com12 32 . . 3 (𝐺 ∈ FriendGraph → (∃𝑣 𝐴 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
206, 19biimtrid 241 . 2 (𝐺 ∈ FriendGraph → ((♯‘𝐴) = 1 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2120imp 407 1 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐴) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  wral 3063  wrex 3072  {crab 3406  Vcvv 3444  cdif 3906  wss 3909  {csn 4585  {cpr 4587  cfv 6494  1c1 11049  chash 14227  Vtxcvtx 27845  Edgcedg 27896  VtxDegcvtxdg 28311   FriendGraph cfrgr 29100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7669  ax-cnex 11104  ax-resscn 11105  ax-1cn 11106  ax-icn 11107  ax-addcl 11108  ax-addrcl 11109  ax-mulcl 11110  ax-mulrcl 11111  ax-mulcom 11112  ax-addass 11113  ax-mulass 11114  ax-distr 11115  ax-i2m1 11116  ax-1ne0 11117  ax-1rid 11118  ax-rnegex 11119  ax-rrecex 11120  ax-cnre 11121  ax-pre-lttri 11122  ax-pre-lttrn 11123  ax-pre-ltadd 11124  ax-pre-mulgt0 11125
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5530  df-eprel 5536  df-po 5544  df-so 5545  df-fr 5587  df-we 5589  df-xp 5638  df-rel 5639  df-cnv 5640  df-co 5641  df-dm 5642  df-rn 5643  df-res 5644  df-ima 5645  df-pred 6252  df-ord 6319  df-on 6320  df-lim 6321  df-suc 6322  df-iota 6446  df-fun 6496  df-fn 6497  df-f 6498  df-f1 6499  df-fo 6500  df-f1o 6501  df-fv 6502  df-riota 7310  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7800  df-1st 7918  df-2nd 7919  df-frecs 8209  df-wrecs 8240  df-recs 8314  df-rdg 8353  df-1o 8409  df-2o 8410  df-oadd 8413  df-er 8645  df-en 8881  df-dom 8882  df-sdom 8883  df-fin 8884  df-dju 9834  df-card 9872  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11384  df-neg 11385  df-nn 12151  df-2 12213  df-n0 12411  df-xnn0 12483  df-z 12497  df-uz 12761  df-xadd 13031  df-fz 13422  df-hash 14228  df-edg 27897  df-uhgr 27907  df-ushgr 27908  df-upgr 27931  df-umgr 27932  df-uspgr 27999  df-usgr 28000  df-nbgr 28179  df-vtxdg 28312  df-frgr 29101
This theorem is referenced by:  frgrregorufr0  29166
  Copyright terms: Public domain W3C validator