MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg1 Structured version   Visualization version   GIF version

Theorem frgrwopreg1 30299
Description: According to statement 5 in [Huneke] p. 2: "If A ... is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreg1 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐴) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵   𝑣,𝐴,𝑤   𝑣,𝐵,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤,𝑥   𝑤,𝑉,𝑣
Allowed substitution hints:   𝐷(𝑤,𝑣)   𝐸(𝑥,𝑤)   𝐾(𝑤,𝑣)

Proof of Theorem frgrwopreg1
StepHypRef Expression
1 frgrwopreg.a . . . . 5 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
2 frgrwopreg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32fvexi 6890 . . . . 5 𝑉 ∈ V
41, 3rabex2 5311 . . . 4 𝐴 ∈ V
5 hash1snb 14437 . . . 4 (𝐴 ∈ V → ((♯‘𝐴) = 1 ↔ ∃𝑣 𝐴 = {𝑣}))
64, 5ax-mp 5 . . 3 ((♯‘𝐴) = 1 ↔ ∃𝑣 𝐴 = {𝑣})
7 exsnrex 4656 . . . . 5 (∃𝑣 𝐴 = {𝑣} ↔ ∃𝑣𝐴 𝐴 = {𝑣})
81ssrab3 4057 . . . . . . 7 𝐴𝑉
9 ssrexv 4028 . . . . . . 7 (𝐴𝑉 → (∃𝑣𝐴 𝐴 = {𝑣} → ∃𝑣𝑉 𝐴 = {𝑣}))
108, 9ax-mp 5 . . . . . 6 (∃𝑣𝐴 𝐴 = {𝑣} → ∃𝑣𝑉 𝐴 = {𝑣})
11 frgrwopreg.d . . . . . . . . 9 𝐷 = (VtxDeg‘𝐺)
12 frgrwopreg.b . . . . . . . . 9 𝐵 = (𝑉𝐴)
13 frgrwopreg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
142, 11, 1, 12, 13frgrwopregasn 30297 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉𝐴 = {𝑣}) → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
15143expia 1121 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (𝐴 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1615reximdva 3153 . . . . . 6 (𝐺 ∈ FriendGraph → (∃𝑣𝑉 𝐴 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1710, 16syl5com 31 . . . . 5 (∃𝑣𝐴 𝐴 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
187, 17sylbi 217 . . . 4 (∃𝑣 𝐴 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1918com12 32 . . 3 (𝐺 ∈ FriendGraph → (∃𝑣 𝐴 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
206, 19biimtrid 242 . 2 (𝐺 ∈ FriendGraph → ((♯‘𝐴) = 1 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2120imp 406 1 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐴) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  wss 3926  {csn 4601  {cpr 4603  cfv 6531  1c1 11130  chash 14348  Vtxcvtx 28975  Edgcedg 29026  VtxDegcvtxdg 29445   FriendGraph cfrgr 30239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-xadd 13129  df-fz 13525  df-hash 14349  df-edg 29027  df-uhgr 29037  df-ushgr 29038  df-upgr 29061  df-umgr 29062  df-uspgr 29129  df-usgr 29130  df-nbgr 29312  df-vtxdg 29446  df-frgr 30240
This theorem is referenced by:  frgrregorufr0  30305
  Copyright terms: Public domain W3C validator