| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version | ||
| Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 4622 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-sn 4586 |
| This theorem is referenced by: exsnrex 4640 rext 5403 unipw 5405 xpdifid 6129 opabiota 6925 fnressn 7112 fressnfv 7114 snnex 7714 frrlem12 8253 frrlem14 8255 mapsnd 8836 findcard2d 9107 ac6sfi 9207 iunfi 9270 elirrvOLD 9526 kmlem2 10083 fin1a2lem10 10340 hsmexlem4 10360 iunfo 10470 modfsummodslem1 15735 lcmfunsnlem2lem1 16585 coprmprod 16608 coprmproddvdslem 16609 c0snmgmhm 20383 lbsextlem4 21104 frlmlbs 21740 coe1fzgsumdlem 22224 evl1gsumdlem 22277 maducoeval2 22561 dishaus 23303 dis2ndc 23381 dislly 23418 dissnlocfin 23450 comppfsc 23453 txdis 23553 txdis1cn 23556 txkgen 23573 isufil2 23829 alexsubALTlem4 23971 tmdgsum 24016 dscopn 24495 ovolfiniun 25436 volfiniun 25482 jensen 26933 uvtx01vtx 29378 cplgr1vlem 29410 unidifsnel 32515 gsumpart 33041 extdg1id 33655 irngss 33676 esum2dlem 34076 bnj1498 35045 funen1cnv 35072 wevgblacfn 35090 cvmlift2lem1 35283 funpartlem 35924 topdifinffinlem 37329 fvineqsneq 37394 pibt2 37399 finixpnum 37593 mbfresfi 37654 pclfinN 39888 sn-iotalem 42203 mzpcompact2lem 42733 dvmptfprod 45937 fourierdlem48 46146 sge0sup 46383 funressnvmo 47040 dfclnbgr6 47850 dfsclnbgr6 47852 termco 49464 termcarweu 49511 diag1f1o 49517 diag2f1o 49520 |
| Copyright terms: Public domain | W3C validator |