Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version |
Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
vsnid | ⊢ 𝑥 ∈ {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3402 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 4553 | 1 ⊢ 𝑥 ∈ {𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2113 {csn 4517 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-v 3400 df-sn 4518 |
This theorem is referenced by: exsnrex 4572 rext 5308 unipw 5310 xpdifid 6001 opabiota 6752 fnressn 6931 fressnfv 6933 snnex 7500 wfrlem14 7998 wfrlem16 8000 mapsnd 8497 findcard2d 8766 ac6sfi 8837 iunfi 8886 elirrv 9134 kmlem2 9652 fin1a2lem10 9910 hsmexlem4 9930 iunfo 10040 modfsummodslem1 15241 lcmfunsnlem2lem1 16080 coprmprod 16103 coprmproddvdslem 16104 lbsextlem4 20053 frlmlbs 20614 coe1fzgsumdlem 21077 evl1gsumdlem 21127 maducoeval2 21392 dishaus 22134 dis2ndc 22212 dislly 22249 dissnlocfin 22281 comppfsc 22284 txdis 22384 txdis1cn 22387 txkgen 22404 isufil2 22660 alexsubALTlem4 22802 tmdgsum 22847 dscopn 23327 ovolfiniun 24254 volfiniun 24300 jensen 25726 uvtx01vtx 27339 cplgr1vlem 27371 unidifsnel 30457 gsumpart 30892 extdg1id 31310 esum2dlem 31630 bnj1498 32612 funen1cnv 32631 cvmlift2lem1 32835 frrlem12 33452 frrlem14 33454 funpartlem 33882 topdifinffinlem 35138 fvineqsneq 35203 pibt2 35208 finixpnum 35382 mbfresfi 35443 pclfinN 37534 mzpcompact2lem 40137 fourierdlem48 43229 sge0sup 43463 funressnvmo 44070 c0snmgmhm 44998 |
Copyright terms: Public domain | W3C validator |