| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version | ||
| Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3451 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 4626 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-sn 4590 |
| This theorem is referenced by: exsnrex 4644 rext 5408 unipw 5410 xpdifid 6141 opabiota 6943 fnressn 7130 fressnfv 7132 snnex 7734 frrlem12 8276 frrlem14 8278 mapsnd 8859 findcard2d 9130 ac6sfi 9231 iunfi 9294 elirrv 9549 kmlem2 10105 fin1a2lem10 10362 hsmexlem4 10382 iunfo 10492 modfsummodslem1 15758 lcmfunsnlem2lem1 16608 coprmprod 16631 coprmproddvdslem 16632 c0snmgmhm 20371 lbsextlem4 21071 frlmlbs 21706 coe1fzgsumdlem 22190 evl1gsumdlem 22243 maducoeval2 22527 dishaus 23269 dis2ndc 23347 dislly 23384 dissnlocfin 23416 comppfsc 23419 txdis 23519 txdis1cn 23522 txkgen 23539 isufil2 23795 alexsubALTlem4 23937 tmdgsum 23982 dscopn 24461 ovolfiniun 25402 volfiniun 25448 jensen 26899 uvtx01vtx 29324 cplgr1vlem 29356 unidifsnel 32464 gsumpart 32997 extdg1id 33661 irngss 33682 esum2dlem 34082 bnj1498 35051 funen1cnv 35078 wevgblacfn 35096 cvmlift2lem1 35289 funpartlem 35930 topdifinffinlem 37335 fvineqsneq 37400 pibt2 37405 finixpnum 37599 mbfresfi 37660 pclfinN 39894 sn-iotalem 42209 mzpcompact2lem 42739 dvmptfprod 45943 fourierdlem48 46152 sge0sup 46389 funressnvmo 47046 dfclnbgr6 47856 dfsclnbgr6 47858 termco 49470 termcarweu 49517 diag1f1o 49523 diag2f1o 49526 |
| Copyright terms: Public domain | W3C validator |