![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version |
Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
vsnid | ⊢ 𝑥 ∈ {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3481 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 4666 | 1 ⊢ 𝑥 ∈ {𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 {csn 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-sn 4631 |
This theorem is referenced by: exsnrex 4684 rext 5458 unipw 5460 xpdifid 6189 opabiota 6990 fnressn 7177 fressnfv 7179 snnex 7776 frrlem12 8320 frrlem14 8322 wfrlem14OLD 8360 wfrlem16OLD 8362 mapsnd 8924 findcard2d 9204 ac6sfi 9317 iunfi 9380 elirrv 9633 kmlem2 10189 fin1a2lem10 10446 hsmexlem4 10466 iunfo 10576 modfsummodslem1 15824 lcmfunsnlem2lem1 16671 coprmprod 16694 coprmproddvdslem 16695 c0snmgmhm 20478 lbsextlem4 21180 frlmlbs 21834 coe1fzgsumdlem 22322 evl1gsumdlem 22375 maducoeval2 22661 dishaus 23405 dis2ndc 23483 dislly 23520 dissnlocfin 23552 comppfsc 23555 txdis 23655 txdis1cn 23658 txkgen 23675 isufil2 23931 alexsubALTlem4 24073 tmdgsum 24118 dscopn 24601 ovolfiniun 25549 volfiniun 25595 jensen 27046 uvtx01vtx 29428 cplgr1vlem 29460 unidifsnel 32560 gsumpart 33042 extdg1id 33690 irngss 33701 esum2dlem 34072 bnj1498 35053 funen1cnv 35080 wevgblacfn 35092 cvmlift2lem1 35286 funpartlem 35923 topdifinffinlem 37329 fvineqsneq 37394 pibt2 37399 finixpnum 37591 mbfresfi 37652 pclfinN 39882 sn-iotalem 42238 mzpcompact2lem 42738 dvmptfprod 45900 fourierdlem48 46109 sge0sup 46346 funressnvmo 46994 dfclnbgr6 47779 dfsclnbgr6 47781 |
Copyright terms: Public domain | W3C validator |