| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version | ||
| Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 4638 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-sn 4602 |
| This theorem is referenced by: exsnrex 4656 rext 5423 unipw 5425 xpdifid 6157 opabiota 6961 fnressn 7148 fressnfv 7150 snnex 7752 frrlem12 8296 frrlem14 8298 wfrlem14OLD 8336 wfrlem16OLD 8338 mapsnd 8900 findcard2d 9180 ac6sfi 9292 iunfi 9355 elirrv 9610 kmlem2 10166 fin1a2lem10 10423 hsmexlem4 10443 iunfo 10553 modfsummodslem1 15808 lcmfunsnlem2lem1 16657 coprmprod 16680 coprmproddvdslem 16681 c0snmgmhm 20422 lbsextlem4 21122 frlmlbs 21757 coe1fzgsumdlem 22241 evl1gsumdlem 22294 maducoeval2 22578 dishaus 23320 dis2ndc 23398 dislly 23435 dissnlocfin 23467 comppfsc 23470 txdis 23570 txdis1cn 23573 txkgen 23590 isufil2 23846 alexsubALTlem4 23988 tmdgsum 24033 dscopn 24512 ovolfiniun 25454 volfiniun 25500 jensen 26951 uvtx01vtx 29376 cplgr1vlem 29408 unidifsnel 32516 gsumpart 33051 extdg1id 33707 irngss 33728 esum2dlem 34123 bnj1498 35092 funen1cnv 35119 wevgblacfn 35131 cvmlift2lem1 35324 funpartlem 35960 topdifinffinlem 37365 fvineqsneq 37430 pibt2 37435 finixpnum 37629 mbfresfi 37690 pclfinN 39919 sn-iotalem 42272 mzpcompact2lem 42774 dvmptfprod 45974 fourierdlem48 46183 sge0sup 46420 funressnvmo 47074 dfclnbgr6 47869 dfsclnbgr6 47871 termcarweu 49413 diag1f1o 49419 diag2f1o 49422 |
| Copyright terms: Public domain | W3C validator |