Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version |
Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
vsnid | ⊢ 𝑥 ∈ {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3434 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 4602 | 1 ⊢ 𝑥 ∈ {𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 {csn 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-sn 4567 |
This theorem is referenced by: exsnrex 4621 rext 5366 unipw 5368 xpdifid 6068 opabiota 6845 fnressn 7024 fressnfv 7026 snnex 7599 frrlem12 8097 frrlem14 8099 wfrlem14OLD 8137 wfrlem16OLD 8139 mapsnd 8648 findcard2d 8914 ac6sfi 9019 iunfi 9068 elirrv 9316 kmlem2 9891 fin1a2lem10 10149 hsmexlem4 10169 iunfo 10279 modfsummodslem1 15485 lcmfunsnlem2lem1 16324 coprmprod 16347 coprmproddvdslem 16348 lbsextlem4 20404 frlmlbs 20985 coe1fzgsumdlem 21453 evl1gsumdlem 21503 maducoeval2 21770 dishaus 22514 dis2ndc 22592 dislly 22629 dissnlocfin 22661 comppfsc 22664 txdis 22764 txdis1cn 22767 txkgen 22784 isufil2 23040 alexsubALTlem4 23182 tmdgsum 23227 dscopn 23710 ovolfiniun 24646 volfiniun 24692 jensen 26119 uvtx01vtx 27745 cplgr1vlem 27777 unidifsnel 30862 gsumpart 31294 extdg1id 31717 esum2dlem 32039 bnj1498 33020 funen1cnv 33039 cvmlift2lem1 33243 funpartlem 34223 topdifinffinlem 35497 fvineqsneq 35562 pibt2 35567 finixpnum 35741 mbfresfi 35802 pclfinN 37893 sn-iotalem 40169 mzpcompact2lem 40553 fourierdlem48 43649 sge0sup 43883 funressnvmo 44490 c0snmgmhm 45424 |
Copyright terms: Public domain | W3C validator |