| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version | ||
| Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 4612 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-sn 4574 |
| This theorem is referenced by: exsnrex 4630 rext 5387 unipw 5389 xpdifid 6115 opabiota 6904 fnressn 7091 fressnfv 7093 snnex 7691 frrlem12 8227 frrlem14 8229 mapsnd 8810 findcard2d 9076 ac6sfi 9168 iunfi 9227 elirrvOLD 9484 kmlem2 10043 fin1a2lem10 10300 hsmexlem4 10320 iunfo 10430 modfsummodslem1 15699 lcmfunsnlem2lem1 16549 coprmprod 16572 coprmproddvdslem 16573 c0snmgmhm 20380 lbsextlem4 21098 frlmlbs 21734 coe1fzgsumdlem 22218 evl1gsumdlem 22271 maducoeval2 22555 dishaus 23297 dis2ndc 23375 dislly 23412 dissnlocfin 23444 comppfsc 23447 txdis 23547 txdis1cn 23550 txkgen 23567 isufil2 23823 alexsubALTlem4 23965 tmdgsum 24010 dscopn 24488 ovolfiniun 25429 volfiniun 25475 jensen 26926 uvtx01vtx 29375 cplgr1vlem 29407 unidifsnel 32515 gsumpart 33037 extdg1id 33679 irngss 33700 esum2dlem 34105 bnj1498 35073 funen1cnv 35100 fineqvnttrclselem2 35142 wevgblacfn 35153 cvmlift2lem1 35346 funpartlem 35986 topdifinffinlem 37391 fvineqsneq 37456 pibt2 37461 finixpnum 37644 mbfresfi 37705 pclfinN 39998 sn-iotalem 42313 mzpcompact2lem 42843 dvmptfprod 46042 fourierdlem48 46251 sge0sup 46488 funressnvmo 47144 dfclnbgr6 47955 dfsclnbgr6 47957 termco 49581 termcarweu 49628 diag1f1o 49634 diag2f1o 49637 |
| Copyright terms: Public domain | W3C validator |