![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version |
Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
vsnid | ⊢ 𝑥 ∈ {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3492 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 4684 | 1 ⊢ 𝑥 ∈ {𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-sn 4649 |
This theorem is referenced by: exsnrex 4704 rext 5468 unipw 5470 xpdifid 6199 opabiota 7004 fnressn 7192 fressnfv 7194 snnex 7793 frrlem12 8338 frrlem14 8340 wfrlem14OLD 8378 wfrlem16OLD 8380 mapsnd 8944 findcard2d 9232 ac6sfi 9348 iunfi 9411 elirrv 9665 kmlem2 10221 fin1a2lem10 10478 hsmexlem4 10498 iunfo 10608 modfsummodslem1 15840 lcmfunsnlem2lem1 16685 coprmprod 16708 coprmproddvdslem 16709 c0snmgmhm 20488 lbsextlem4 21186 frlmlbs 21840 coe1fzgsumdlem 22328 evl1gsumdlem 22381 maducoeval2 22667 dishaus 23411 dis2ndc 23489 dislly 23526 dissnlocfin 23558 comppfsc 23561 txdis 23661 txdis1cn 23664 txkgen 23681 isufil2 23937 alexsubALTlem4 24079 tmdgsum 24124 dscopn 24607 ovolfiniun 25555 volfiniun 25601 jensen 27050 uvtx01vtx 29432 cplgr1vlem 29464 unidifsnel 32563 gsumpart 33038 extdg1id 33676 irngss 33687 esum2dlem 34056 bnj1498 35037 funen1cnv 35064 wevgblacfn 35076 cvmlift2lem1 35270 funpartlem 35906 topdifinffinlem 37313 fvineqsneq 37378 pibt2 37383 finixpnum 37565 mbfresfi 37626 pclfinN 39857 sn-iotalem 42214 mzpcompact2lem 42707 fourierdlem48 46075 sge0sup 46312 funressnvmo 46960 dfclnbgr6 47728 dfsclnbgr6 47730 |
Copyright terms: Public domain | W3C validator |