| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version | ||
| Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 4614 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-sn 4578 |
| This theorem is referenced by: exsnrex 4632 rext 5391 unipw 5393 xpdifid 6117 opabiota 6905 fnressn 7092 fressnfv 7094 snnex 7694 frrlem12 8230 frrlem14 8232 mapsnd 8813 findcard2d 9080 ac6sfi 9173 iunfi 9233 elirrvOLD 9490 kmlem2 10046 fin1a2lem10 10303 hsmexlem4 10323 iunfo 10433 modfsummodslem1 15699 lcmfunsnlem2lem1 16549 coprmprod 16572 coprmproddvdslem 16573 c0snmgmhm 20347 lbsextlem4 21068 frlmlbs 21704 coe1fzgsumdlem 22188 evl1gsumdlem 22241 maducoeval2 22525 dishaus 23267 dis2ndc 23345 dislly 23382 dissnlocfin 23414 comppfsc 23417 txdis 23517 txdis1cn 23520 txkgen 23537 isufil2 23793 alexsubALTlem4 23935 tmdgsum 23980 dscopn 24459 ovolfiniun 25400 volfiniun 25446 jensen 26897 uvtx01vtx 29346 cplgr1vlem 29378 unidifsnel 32484 gsumpart 33019 extdg1id 33649 irngss 33670 esum2dlem 34075 bnj1498 35044 funen1cnv 35071 fineqvnttrclselem2 35091 wevgblacfn 35102 cvmlift2lem1 35295 funpartlem 35936 topdifinffinlem 37341 fvineqsneq 37406 pibt2 37411 finixpnum 37605 mbfresfi 37666 pclfinN 39899 sn-iotalem 42214 mzpcompact2lem 42744 dvmptfprod 45946 fourierdlem48 46155 sge0sup 46392 funressnvmo 47049 dfclnbgr6 47860 dfsclnbgr6 47862 termco 49486 termcarweu 49533 diag1f1o 49539 diag2f1o 49542 |
| Copyright terms: Public domain | W3C validator |