| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version | ||
| Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3448 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 4622 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-sn 4586 |
| This theorem is referenced by: exsnrex 4640 rext 5403 unipw 5405 xpdifid 6129 opabiota 6925 fnressn 7112 fressnfv 7114 snnex 7714 frrlem12 8253 frrlem14 8255 mapsnd 8836 findcard2d 9107 ac6sfi 9207 iunfi 9270 elirrv 9525 kmlem2 10081 fin1a2lem10 10338 hsmexlem4 10358 iunfo 10468 modfsummodslem1 15734 lcmfunsnlem2lem1 16584 coprmprod 16607 coprmproddvdslem 16608 c0snmgmhm 20382 lbsextlem4 21103 frlmlbs 21739 coe1fzgsumdlem 22223 evl1gsumdlem 22276 maducoeval2 22560 dishaus 23302 dis2ndc 23380 dislly 23417 dissnlocfin 23449 comppfsc 23452 txdis 23552 txdis1cn 23555 txkgen 23572 isufil2 23828 alexsubALTlem4 23970 tmdgsum 24015 dscopn 24494 ovolfiniun 25435 volfiniun 25481 jensen 26932 uvtx01vtx 29377 cplgr1vlem 29409 unidifsnel 32514 gsumpart 33040 extdg1id 33654 irngss 33675 esum2dlem 34075 bnj1498 35044 funen1cnv 35071 wevgblacfn 35089 cvmlift2lem1 35282 funpartlem 35923 topdifinffinlem 37328 fvineqsneq 37393 pibt2 37398 finixpnum 37592 mbfresfi 37653 pclfinN 39887 sn-iotalem 42202 mzpcompact2lem 42732 dvmptfprod 45936 fourierdlem48 46145 sge0sup 46382 funressnvmo 47039 dfclnbgr6 47849 dfsclnbgr6 47851 termco 49463 termcarweu 49510 diag1f1o 49516 diag2f1o 49519 |
| Copyright terms: Public domain | W3C validator |