Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version |
Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
vsnid | ⊢ 𝑥 ∈ {𝑥} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3441 | . 2 ⊢ 𝑥 ∈ V | |
2 | 1 | snid 4601 | 1 ⊢ 𝑥 ∈ {𝑥} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 {csn 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-sn 4566 |
This theorem is referenced by: exsnrex 4620 rext 5377 unipw 5379 xpdifid 6086 opabiota 6883 fnressn 7062 fressnfv 7064 snnex 7640 frrlem12 8144 frrlem14 8146 wfrlem14OLD 8184 wfrlem16OLD 8186 mapsnd 8705 findcard2d 8987 ac6sfi 9102 iunfi 9151 elirrv 9399 kmlem2 9953 fin1a2lem10 10211 hsmexlem4 10231 iunfo 10341 modfsummodslem1 15549 lcmfunsnlem2lem1 16388 coprmprod 16411 coprmproddvdslem 16412 lbsextlem4 20468 frlmlbs 21049 coe1fzgsumdlem 21517 evl1gsumdlem 21567 maducoeval2 21834 dishaus 22578 dis2ndc 22656 dislly 22693 dissnlocfin 22725 comppfsc 22728 txdis 22828 txdis1cn 22831 txkgen 22848 isufil2 23104 alexsubALTlem4 23246 tmdgsum 23291 dscopn 23774 ovolfiniun 24710 volfiniun 24756 jensen 26183 uvtx01vtx 27809 cplgr1vlem 27841 unidifsnel 30928 gsumpart 31360 extdg1id 31783 esum2dlem 32105 bnj1498 33086 funen1cnv 33105 cvmlift2lem1 33309 funpartlem 34289 topdifinffinlem 35562 fvineqsneq 35627 pibt2 35632 finixpnum 35806 mbfresfi 35867 pclfinN 37956 sn-iotalem 40232 mzpcompact2lem 40610 fourierdlem48 43744 sge0sup 43979 funressnvmo 44597 c0snmgmhm 45530 |
Copyright terms: Public domain | W3C validator |