| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vsnid | Structured version Visualization version GIF version | ||
| Description: A setvar variable is a member of its singleton. (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| vsnid | ⊢ 𝑥 ∈ {𝑥} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3454 | . 2 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snid 4629 | 1 ⊢ 𝑥 ∈ {𝑥} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-sn 4593 |
| This theorem is referenced by: exsnrex 4647 rext 5411 unipw 5413 xpdifid 6144 opabiota 6946 fnressn 7133 fressnfv 7135 snnex 7737 frrlem12 8279 frrlem14 8281 mapsnd 8862 findcard2d 9136 ac6sfi 9238 iunfi 9301 elirrv 9556 kmlem2 10112 fin1a2lem10 10369 hsmexlem4 10389 iunfo 10499 modfsummodslem1 15765 lcmfunsnlem2lem1 16615 coprmprod 16638 coprmproddvdslem 16639 c0snmgmhm 20378 lbsextlem4 21078 frlmlbs 21713 coe1fzgsumdlem 22197 evl1gsumdlem 22250 maducoeval2 22534 dishaus 23276 dis2ndc 23354 dislly 23391 dissnlocfin 23423 comppfsc 23426 txdis 23526 txdis1cn 23529 txkgen 23546 isufil2 23802 alexsubALTlem4 23944 tmdgsum 23989 dscopn 24468 ovolfiniun 25409 volfiniun 25455 jensen 26906 uvtx01vtx 29331 cplgr1vlem 29363 unidifsnel 32471 gsumpart 33004 extdg1id 33668 irngss 33689 esum2dlem 34089 bnj1498 35058 funen1cnv 35085 wevgblacfn 35103 cvmlift2lem1 35296 funpartlem 35937 topdifinffinlem 37342 fvineqsneq 37407 pibt2 37412 finixpnum 37606 mbfresfi 37667 pclfinN 39901 sn-iotalem 42216 mzpcompact2lem 42746 dvmptfprod 45950 fourierdlem48 46159 sge0sup 46396 funressnvmo 47050 dfclnbgr6 47860 dfsclnbgr6 47862 termco 49474 termcarweu 49521 diag1f1o 49527 diag2f1o 49530 |
| Copyright terms: Public domain | W3C validator |