Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrwopreg2 | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopreg2 | ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrwopreg.d | . . . . . 6 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | frgrwopreg.b | . . . . . 6 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
5 | 1, 2, 3, 4 | frgrwopreglem1 28964 | . . . . 5 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
6 | 5 | simpri 487 | . . . 4 ⊢ 𝐵 ∈ V |
7 | hash1snb 14239 | . . . 4 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣})) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣}) |
9 | exsnrex 4633 | . . . . 5 ⊢ (∃𝑣 𝐵 = {𝑣} ↔ ∃𝑣 ∈ 𝐵 𝐵 = {𝑣}) | |
10 | difss 4083 | . . . . . . . 8 ⊢ (𝑉 ∖ 𝐴) ⊆ 𝑉 | |
11 | 4, 10 | eqsstri 3970 | . . . . . . 7 ⊢ 𝐵 ⊆ 𝑉 |
12 | ssrexv 4003 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝑉 → (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣})) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣}) |
14 | frgrwopreg.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
15 | 1, 2, 3, 4, 14 | frgrwopregbsn 28969 | . . . . . . . 8 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑣 ∈ 𝑉 ∧ 𝐵 = {𝑣}) → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
16 | 15 | 3expia 1121 | . . . . . . 7 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑣 ∈ 𝑉) → (𝐵 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
17 | 16 | reximdva 3162 | . . . . . 6 ⊢ (𝐺 ∈ FriendGraph → (∃𝑣 ∈ 𝑉 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
18 | 13, 17 | syl5com 31 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
19 | 9, 18 | sylbi 216 | . . . 4 ⊢ (∃𝑣 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
20 | 19 | com12 32 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (∃𝑣 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
21 | 8, 20 | biimtrid 241 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((♯‘𝐵) = 1 → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
22 | 21 | imp 408 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3062 ∃wrex 3071 {crab 3404 Vcvv 3442 ∖ cdif 3899 ⊆ wss 3902 {csn 4578 {cpr 4580 ‘cfv 6484 1c1 10978 ♯chash 14150 Vtxcvtx 27655 Edgcedg 27706 VtxDegcvtxdg 28121 FriendGraph cfrgr 28910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-2o 8373 df-oadd 8376 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-dju 9763 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-n0 12340 df-xnn0 12412 df-z 12426 df-uz 12689 df-xadd 12955 df-fz 13346 df-hash 14151 df-edg 27707 df-uhgr 27717 df-ushgr 27718 df-upgr 27741 df-umgr 27742 df-uspgr 27809 df-usgr 27810 df-nbgr 27989 df-vtxdg 28122 df-frgr 28911 |
This theorem is referenced by: frgrregorufr0 28976 |
Copyright terms: Public domain | W3C validator |