MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrwopreg2 Structured version   Visualization version   GIF version

Theorem frgrwopreg2 28971
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.)
Hypotheses
Ref Expression
frgrwopreg.v 𝑉 = (Vtx‘𝐺)
frgrwopreg.d 𝐷 = (VtxDeg‘𝐺)
frgrwopreg.a 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
frgrwopreg.b 𝐵 = (𝑉𝐴)
frgrwopreg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrwopreg2 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Distinct variable groups:   𝑥,𝑉   𝑥,𝐴   𝑥,𝐺   𝑥,𝐾   𝑥,𝐷   𝑥,𝐵   𝑣,𝐴,𝑤   𝑣,𝐵,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤,𝑥   𝑤,𝑉,𝑣
Allowed substitution hints:   𝐷(𝑤,𝑣)   𝐸(𝑥,𝑤)   𝐾(𝑤,𝑣)

Proof of Theorem frgrwopreg2
StepHypRef Expression
1 frgrwopreg.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 frgrwopreg.d . . . . . 6 𝐷 = (VtxDeg‘𝐺)
3 frgrwopreg.a . . . . . 6 𝐴 = {𝑥𝑉 ∣ (𝐷𝑥) = 𝐾}
4 frgrwopreg.b . . . . . 6 𝐵 = (𝑉𝐴)
51, 2, 3, 4frgrwopreglem1 28964 . . . . 5 (𝐴 ∈ V ∧ 𝐵 ∈ V)
65simpri 487 . . . 4 𝐵 ∈ V
7 hash1snb 14239 . . . 4 (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣}))
86, 7ax-mp 5 . . 3 ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣})
9 exsnrex 4633 . . . . 5 (∃𝑣 𝐵 = {𝑣} ↔ ∃𝑣𝐵 𝐵 = {𝑣})
10 difss 4083 . . . . . . . 8 (𝑉𝐴) ⊆ 𝑉
114, 10eqsstri 3970 . . . . . . 7 𝐵𝑉
12 ssrexv 4003 . . . . . . 7 (𝐵𝑉 → (∃𝑣𝐵 𝐵 = {𝑣} → ∃𝑣𝑉 𝐵 = {𝑣}))
1311, 12ax-mp 5 . . . . . 6 (∃𝑣𝐵 𝐵 = {𝑣} → ∃𝑣𝑉 𝐵 = {𝑣})
14 frgrwopreg.e . . . . . . . . 9 𝐸 = (Edg‘𝐺)
151, 2, 3, 4, 14frgrwopregbsn 28969 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉𝐵 = {𝑣}) → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
16153expia 1121 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑣𝑉) → (𝐵 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1716reximdva 3162 . . . . . 6 (𝐺 ∈ FriendGraph → (∃𝑣𝑉 𝐵 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1813, 17syl5com 31 . . . . 5 (∃𝑣𝐵 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
199, 18sylbi 216 . . . 4 (∃𝑣 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2019com12 32 . . 3 (𝐺 ∈ FriendGraph → (∃𝑣 𝐵 = {𝑣} → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
218, 20biimtrid 241 . 2 (𝐺 ∈ FriendGraph → ((♯‘𝐵) = 1 → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
2221imp 408 1 ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wex 1781  wcel 2106  wral 3062  wrex 3071  {crab 3404  Vcvv 3442  cdif 3899  wss 3902  {csn 4578  {cpr 4580  cfv 6484  1c1 10978  chash 14150  Vtxcvtx 27655  Edgcedg 27706  VtxDegcvtxdg 28121   FriendGraph cfrgr 28910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5234  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-int 4900  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-1o 8372  df-2o 8373  df-oadd 8376  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-fin 8813  df-dju 9763  df-card 9801  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-nn 12080  df-2 12142  df-n0 12340  df-xnn0 12412  df-z 12426  df-uz 12689  df-xadd 12955  df-fz 13346  df-hash 14151  df-edg 27707  df-uhgr 27717  df-ushgr 27718  df-upgr 27741  df-umgr 27742  df-uspgr 27809  df-usgr 27810  df-nbgr 27989  df-vtxdg 28122  df-frgr 28911
This theorem is referenced by:  frgrregorufr0  28976
  Copyright terms: Public domain W3C validator