![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrwopreg2 | Structured version Visualization version GIF version |
Description: According to statement 5 in [Huneke] p. 2: "If ... B is a singleton, then that singleton is a universal friend". (Contributed by Alexander van der Vekens, 1-Jan-2018.) (Proof shortened by AV, 4-Feb-2022.) |
Ref | Expression |
---|---|
frgrwopreg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrwopreg.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
frgrwopreg.a | ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} |
frgrwopreg.b | ⊢ 𝐵 = (𝑉 ∖ 𝐴) |
frgrwopreg.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
frgrwopreg2 | ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrwopreg.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrwopreg.d | . . . . . 6 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
3 | frgrwopreg.a | . . . . . 6 ⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ (𝐷‘𝑥) = 𝐾} | |
4 | frgrwopreg.b | . . . . . 6 ⊢ 𝐵 = (𝑉 ∖ 𝐴) | |
5 | 1, 2, 3, 4 | frgrwopreglem1 30242 | . . . . 5 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
6 | 5 | simpri 484 | . . . 4 ⊢ 𝐵 ∈ V |
7 | hash1snb 14431 | . . . 4 ⊢ (𝐵 ∈ V → ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣})) | |
8 | 6, 7 | ax-mp 5 | . . 3 ⊢ ((♯‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣}) |
9 | exsnrex 4679 | . . . . 5 ⊢ (∃𝑣 𝐵 = {𝑣} ↔ ∃𝑣 ∈ 𝐵 𝐵 = {𝑣}) | |
10 | difss 4128 | . . . . . . . 8 ⊢ (𝑉 ∖ 𝐴) ⊆ 𝑉 | |
11 | 4, 10 | eqsstri 4013 | . . . . . . 7 ⊢ 𝐵 ⊆ 𝑉 |
12 | ssrexv 4048 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝑉 → (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣})) | |
13 | 11, 12 | ax-mp 5 | . . . . . 6 ⊢ (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣}) |
14 | frgrwopreg.e | . . . . . . . . 9 ⊢ 𝐸 = (Edg‘𝐺) | |
15 | 1, 2, 3, 4, 14 | frgrwopregbsn 30247 | . . . . . . . 8 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑣 ∈ 𝑉 ∧ 𝐵 = {𝑣}) → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
16 | 15 | 3expia 1118 | . . . . . . 7 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑣 ∈ 𝑉) → (𝐵 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
17 | 16 | reximdva 3158 | . . . . . 6 ⊢ (𝐺 ∈ FriendGraph → (∃𝑣 ∈ 𝑉 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
18 | 13, 17 | syl5com 31 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
19 | 9, 18 | sylbi 216 | . . . 4 ⊢ (∃𝑣 𝐵 = {𝑣} → (𝐺 ∈ FriendGraph → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
20 | 19 | com12 32 | . . 3 ⊢ (𝐺 ∈ FriendGraph → (∃𝑣 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
21 | 8, 20 | biimtrid 241 | . 2 ⊢ (𝐺 ∈ FriendGraph → ((♯‘𝐵) = 1 → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
22 | 21 | imp 405 | 1 ⊢ ((𝐺 ∈ FriendGraph ∧ (♯‘𝐵) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∀wral 3051 ∃wrex 3060 {crab 3419 Vcvv 3462 ∖ cdif 3943 ⊆ wss 3946 {csn 4623 {cpr 4625 ‘cfv 6546 1c1 11150 ♯chash 14342 Vtxcvtx 28929 Edgcedg 28980 VtxDegcvtxdg 29399 FriendGraph cfrgr 30188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-2o 8489 df-oadd 8492 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-fin 8970 df-dju 9937 df-card 9975 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-n0 12519 df-xnn0 12591 df-z 12605 df-uz 12869 df-xadd 13141 df-fz 13533 df-hash 14343 df-edg 28981 df-uhgr 28991 df-ushgr 28992 df-upgr 29015 df-umgr 29016 df-uspgr 29083 df-usgr 29084 df-nbgr 29266 df-vtxdg 29400 df-frgr 30189 |
This theorem is referenced by: frgrregorufr0 30254 |
Copyright terms: Public domain | W3C validator |