| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version | ||
| Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralsng 4642 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 Vcvv 3450 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-sn 4593 |
| This theorem is referenced by: xpord2indlem 8129 xpord3inddlem 8136 naddcllem 8643 naddasslem1 8661 naddasslem2 8662 elixpsn 8913 frfi 9239 dffi3 9389 ssttrcl 9675 ttrclss 9680 ttrclselem2 9686 fseqenlem1 9984 fpwwe2lem12 10602 hashbc 14425 hashf1lem1 14427 eqs1 14584 cshw1 14794 rpnnen2lem11 16199 drsdirfi 18273 0subg 19090 0subgOLD 19091 0subgALT 19505 efgsp1 19674 dprd2da 19981 lbsextlem4 21078 rnglidl0 21146 ply1coe 22192 mat0dimcrng 22364 txkgen 23546 xkoinjcn 23581 isufil2 23802 ust0 24114 prdsxmetlem 24263 prdsbl 24386 finiunmbl 25452 xrlimcnp 26885 chtub 27130 2sqlem10 27346 dchrisum0flb 27428 pntpbnd1 27504 conway 27718 etasslt 27732 slerec 27738 bday1s 27750 madebdaylemlrcut 27817 precsexlem9 28124 onscutlt 28172 onsiso 28176 n0sfincut 28253 bdayn0p1 28265 zscut 28302 twocut 28316 halfcut 28340 addhalfcut 28341 usgr1e 29179 nbgr2vtx1edg 29284 nbuhgr2vtx1edgb 29286 wlkl1loop 29573 crctcshwlkn0lem7 29753 2pthdlem1 29867 rusgrnumwwlkl1 29905 clwwlkccatlem 29925 clwwlkn2 29980 clwwlkel 29982 clwwlkwwlksb 29990 1wlkdlem4 30076 h1deoi 31485 bnj149 34872 subfacp1lem5 35178 cvmlift2lem1 35296 cvmlift2lem12 35308 lindsenlbs 37616 poimirlem28 37649 poimirlem32 37653 heibor1lem 37810 nadd1suc 43388 nregmodel 45014 usgrexmpl1lem 48016 usgrexmpl2lem 48021 isinito2lem 49491 setc1onsubc 49595 |
| Copyright terms: Public domain | W3C validator |