| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version | ||
| Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralsng 4629 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3438 {csn 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-sn 4580 |
| This theorem is referenced by: xpord2indlem 8087 xpord3inddlem 8094 naddcllem 8601 naddasslem1 8619 naddasslem2 8620 elixpsn 8871 frfi 9190 dffi3 9340 ssttrcl 9630 ttrclss 9635 ttrclselem2 9641 fseqenlem1 9937 fpwwe2lem12 10555 hashbc 14378 hashf1lem1 14380 eqs1 14537 cshw1 14746 rpnnen2lem11 16151 drsdirfi 18229 0subg 19048 0subgOLD 19049 0subgALT 19465 efgsp1 19634 dprd2da 19941 lbsextlem4 21086 rnglidl0 21154 ply1coe 22201 mat0dimcrng 22373 txkgen 23555 xkoinjcn 23590 isufil2 23811 ust0 24123 prdsxmetlem 24272 prdsbl 24395 finiunmbl 25461 xrlimcnp 26894 chtub 27139 2sqlem10 27355 dchrisum0flb 27437 pntpbnd1 27513 conway 27728 etasslt 27742 slerec 27748 bday1s 27763 madebdaylemlrcut 27831 precsexlem9 28140 onscutlt 28188 onsiso 28192 n0sfincut 28269 bdayn0p1 28281 zscut 28318 twocut 28333 halfcut 28364 addhalfcut 28365 usgr1e 29208 nbgr2vtx1edg 29313 nbuhgr2vtx1edgb 29315 wlkl1loop 29601 crctcshwlkn0lem7 29779 2pthdlem1 29893 rusgrnumwwlkl1 29931 clwwlkccatlem 29951 clwwlkn2 30006 clwwlkel 30008 clwwlkwwlksb 30016 1wlkdlem4 30102 h1deoi 31511 bnj149 34841 subfacp1lem5 35156 cvmlift2lem1 35274 cvmlift2lem12 35286 lindsenlbs 37594 poimirlem28 37627 poimirlem32 37631 heibor1lem 37788 nadd1suc 43365 nregmodel 44991 usgrexmpl1lem 48006 usgrexmpl2lem 48011 isinito2lem 49484 setc1onsubc 49588 |
| Copyright terms: Public domain | W3C validator |