| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version | ||
| Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralsng 4628 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 {csn 4576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-sn 4577 |
| This theorem is referenced by: xpord2indlem 8077 xpord3inddlem 8084 naddcllem 8591 naddasslem1 8609 naddasslem2 8610 elixpsn 8861 frfi 9169 dffi3 9315 ssttrcl 9605 ttrclss 9610 ttrclselem2 9616 fseqenlem1 9912 fpwwe2lem12 10530 hashbc 14357 hashf1lem1 14359 eqs1 14517 cshw1 14726 rpnnen2lem11 16130 drsdirfi 18208 0subg 19061 0subgOLD 19062 0subgALT 19478 efgsp1 19647 dprd2da 19954 lbsextlem4 21096 rnglidl0 21164 ply1coe 22211 mat0dimcrng 22383 txkgen 23565 xkoinjcn 23600 isufil2 23821 ust0 24133 prdsxmetlem 24281 prdsbl 24404 finiunmbl 25470 xrlimcnp 26903 chtub 27148 2sqlem10 27364 dchrisum0flb 27446 pntpbnd1 27522 conway 27738 etasslt 27752 slerec 27758 bday1s 27773 madebdaylemlrcut 27842 precsexlem9 28151 onscutlt 28199 onsiso 28203 n0sfincut 28280 bdayn0p1 28292 zscut 28329 twocut 28344 halfcut 28376 addhalfcut 28377 pw2cut2 28380 usgr1e 29221 nbgr2vtx1edg 29326 nbuhgr2vtx1edgb 29328 wlkl1loop 29614 crctcshwlkn0lem7 29792 2pthdlem1 29906 rusgrnumwwlkl1 29944 clwwlkccatlem 29964 clwwlkn2 30019 clwwlkel 30021 clwwlkwwlksb 30029 1wlkdlem4 30115 h1deoi 31524 bnj149 34882 subfacp1lem5 35216 cvmlift2lem1 35334 cvmlift2lem12 35346 lindsenlbs 37654 poimirlem28 37687 poimirlem32 37691 heibor1lem 37848 nadd1suc 43424 nregmodel 45049 usgrexmpl1lem 48051 usgrexmpl2lem 48056 isinito2lem 49529 setc1onsubc 49633 |
| Copyright terms: Public domain | W3C validator |