| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version | ||
| Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralsng 4655 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3050 Vcvv 3463 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-v 3465 df-sn 4607 |
| This theorem is referenced by: xpord2indlem 8154 xpord3inddlem 8161 naddcllem 8696 naddasslem1 8714 naddasslem2 8715 elixpsn 8959 frfi 9303 dffi3 9453 ssttrcl 9737 ttrclss 9742 ttrclselem2 9748 fseqenlem1 10046 fpwwe2lem12 10664 hashbc 14474 hashf1lem1 14476 eqs1 14632 cshw1 14842 rpnnen2lem11 16242 drsdirfi 18321 0subg 19138 0subgOLD 19139 0subgALT 19554 efgsp1 19723 dprd2da 20030 lbsextlem4 21131 rnglidl0 21201 ply1coe 22250 mat0dimcrng 22424 txkgen 23606 xkoinjcn 23641 isufil2 23862 ust0 24174 prdsxmetlem 24323 prdsbl 24448 finiunmbl 25515 xrlimcnp 26947 chtub 27192 2sqlem10 27408 dchrisum0flb 27490 pntpbnd1 27566 conway 27780 etasslt 27794 slerec 27800 bday1s 27812 madebdaylemlrcut 27873 precsexlem9 28175 zscut 28329 nohalf 28343 halfcut 28352 addhalfcut 28355 usgr1e 29190 nbgr2vtx1edg 29295 nbuhgr2vtx1edgb 29297 wlkl1loop 29584 crctcshwlkn0lem7 29764 2pthdlem1 29878 rusgrnumwwlkl1 29916 clwwlkccatlem 29936 clwwlkn2 29991 clwwlkel 29993 clwwlkwwlksb 30001 1wlkdlem4 30087 h1deoi 31496 bnj149 34848 subfacp1lem5 35148 cvmlift2lem1 35266 cvmlift2lem12 35278 lindsenlbs 37581 poimirlem28 37614 poimirlem32 37618 heibor1lem 37775 nadd1suc 43367 usgrexmpl1lem 47938 usgrexmpl2lem 47943 |
| Copyright terms: Public domain | W3C validator |