Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version |
Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
Ref | Expression |
---|---|
ralsn.1 | ⊢ 𝐴 ∈ V |
ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ralsng 4614 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 {csn 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3432 df-sn 4567 |
This theorem is referenced by: elixpsn 8699 frfi 9020 dffi3 9151 ssttrcl 9434 ttrclss 9439 ttrclselem2 9445 fseqenlem1 9764 fpwwe2lem12 10382 hashbc 14146 hashf1lem1 14149 hashf1lem1OLD 14150 eqs1 14298 cshw1 14516 rpnnen2lem11 15914 drsdirfi 18004 0subg 18761 efgsp1 19324 dprd2da 19626 lbsextlem4 20404 ply1coe 21448 mat0dimcrng 21600 txkgen 22784 xkoinjcn 22819 isufil2 23040 ust0 23352 prdsxmetlem 23502 prdsbl 23628 finiunmbl 24689 xrlimcnp 26099 chtub 26341 2sqlem10 26557 dchrisum0flb 26639 pntpbnd1 26715 usgr1e 27593 nbgr2vtx1edg 27698 nbuhgr2vtx1edgb 27700 wlkl1loop 27985 crctcshwlkn0lem7 28160 2pthdlem1 28274 rusgrnumwwlkl1 28312 clwwlkccatlem 28332 clwwlkn2 28387 clwwlkel 28389 clwwlkwwlksb 28397 1wlkdlem4 28483 h1deoi 29890 bnj149 32834 subfacp1lem5 33125 cvmlift2lem1 33243 cvmlift2lem12 33255 xpord2ind 33773 xpord3ind 33779 naddcllem 33810 conway 33972 etasslt 33986 slerec 33992 bday1s 34004 madebdaylemlrcut 34058 lindsenlbs 35751 poimirlem28 35784 poimirlem32 35788 heibor1lem 35946 |
Copyright terms: Public domain | W3C validator |