| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version | ||
| Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralsng 4639 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3447 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-sn 4590 |
| This theorem is referenced by: xpord2indlem 8126 xpord3inddlem 8133 naddcllem 8640 naddasslem1 8658 naddasslem2 8659 elixpsn 8910 frfi 9232 dffi3 9382 ssttrcl 9668 ttrclss 9673 ttrclselem2 9679 fseqenlem1 9977 fpwwe2lem12 10595 hashbc 14418 hashf1lem1 14420 eqs1 14577 cshw1 14787 rpnnen2lem11 16192 drsdirfi 18266 0subg 19083 0subgOLD 19084 0subgALT 19498 efgsp1 19667 dprd2da 19974 lbsextlem4 21071 rnglidl0 21139 ply1coe 22185 mat0dimcrng 22357 txkgen 23539 xkoinjcn 23574 isufil2 23795 ust0 24107 prdsxmetlem 24256 prdsbl 24379 finiunmbl 25445 xrlimcnp 26878 chtub 27123 2sqlem10 27339 dchrisum0flb 27421 pntpbnd1 27497 conway 27711 etasslt 27725 slerec 27731 bday1s 27743 madebdaylemlrcut 27810 precsexlem9 28117 onscutlt 28165 onsiso 28169 n0sfincut 28246 bdayn0p1 28258 zscut 28295 twocut 28309 halfcut 28333 addhalfcut 28334 usgr1e 29172 nbgr2vtx1edg 29277 nbuhgr2vtx1edgb 29279 wlkl1loop 29566 crctcshwlkn0lem7 29746 2pthdlem1 29860 rusgrnumwwlkl1 29898 clwwlkccatlem 29918 clwwlkn2 29973 clwwlkel 29975 clwwlkwwlksb 29983 1wlkdlem4 30069 h1deoi 31478 bnj149 34865 subfacp1lem5 35171 cvmlift2lem1 35289 cvmlift2lem12 35301 lindsenlbs 37609 poimirlem28 37642 poimirlem32 37646 heibor1lem 37803 nadd1suc 43381 nregmodel 45007 usgrexmpl1lem 48012 usgrexmpl2lem 48017 isinito2lem 49487 setc1onsubc 49591 |
| Copyright terms: Public domain | W3C validator |