| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version | ||
| Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralsng 4651 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-sn 4602 |
| This theorem is referenced by: xpord2indlem 8146 xpord3inddlem 8153 naddcllem 8688 naddasslem1 8706 naddasslem2 8707 elixpsn 8951 frfi 9293 dffi3 9443 ssttrcl 9729 ttrclss 9734 ttrclselem2 9740 fseqenlem1 10038 fpwwe2lem12 10656 hashbc 14471 hashf1lem1 14473 eqs1 14630 cshw1 14840 rpnnen2lem11 16242 drsdirfi 18317 0subg 19134 0subgOLD 19135 0subgALT 19549 efgsp1 19718 dprd2da 20025 lbsextlem4 21122 rnglidl0 21190 ply1coe 22236 mat0dimcrng 22408 txkgen 23590 xkoinjcn 23625 isufil2 23846 ust0 24158 prdsxmetlem 24307 prdsbl 24430 finiunmbl 25497 xrlimcnp 26930 chtub 27175 2sqlem10 27391 dchrisum0flb 27473 pntpbnd1 27549 conway 27763 etasslt 27777 slerec 27783 bday1s 27795 madebdaylemlrcut 27862 precsexlem9 28169 onscutlt 28217 onsiso 28221 n0sfincut 28298 bdayn0p1 28310 zscut 28347 twocut 28361 halfcut 28385 addhalfcut 28386 usgr1e 29224 nbgr2vtx1edg 29329 nbuhgr2vtx1edgb 29331 wlkl1loop 29618 crctcshwlkn0lem7 29798 2pthdlem1 29912 rusgrnumwwlkl1 29950 clwwlkccatlem 29970 clwwlkn2 30025 clwwlkel 30027 clwwlkwwlksb 30035 1wlkdlem4 30121 h1deoi 31530 bnj149 34906 subfacp1lem5 35206 cvmlift2lem1 35324 cvmlift2lem12 35336 lindsenlbs 37639 poimirlem28 37672 poimirlem32 37676 heibor1lem 37833 nadd1suc 43416 usgrexmpl1lem 48025 usgrexmpl2lem 48030 isinito2lem 49383 setc1onsubc 49479 |
| Copyright terms: Public domain | W3C validator |