| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version | ||
| Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
| Ref | Expression |
|---|---|
| ralsn.1 | ⊢ 𝐴 ∈ V |
| ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | ralsng 4627 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 {csn 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-sn 4576 |
| This theorem is referenced by: xpord2indlem 8083 xpord3inddlem 8090 naddcllem 8597 naddasslem1 8615 naddasslem2 8616 elixpsn 8867 frfi 9176 dffi3 9322 ssttrcl 9612 ttrclss 9617 ttrclselem2 9623 fseqenlem1 9922 fpwwe2lem12 10540 hashbc 14362 hashf1lem1 14364 eqs1 14522 cshw1 14731 rpnnen2lem11 16135 drsdirfi 18213 0subg 19066 0subgALT 19482 efgsp1 19651 dprd2da 19958 lbsextlem4 21100 rnglidl0 21168 ply1coe 22214 mat0dimcrng 22386 txkgen 23568 xkoinjcn 23603 isufil2 23824 ust0 24136 prdsxmetlem 24284 prdsbl 24407 finiunmbl 25473 xrlimcnp 26906 chtub 27151 2sqlem10 27367 dchrisum0flb 27449 pntpbnd1 27525 conway 27741 etasslt 27755 slerec 27761 bday1s 27776 madebdaylemlrcut 27845 precsexlem9 28154 onscutlt 28202 onsiso 28206 n0sfincut 28283 bdayn0p1 28295 zscut 28332 twocut 28347 halfcut 28379 addhalfcut 28380 pw2cut2 28383 usgr1e 29225 nbgr2vtx1edg 29330 nbuhgr2vtx1edgb 29332 wlkl1loop 29618 crctcshwlkn0lem7 29796 2pthdlem1 29910 rusgrnumwwlkl1 29951 clwwlkccatlem 29971 clwwlkn2 30026 clwwlkel 30028 clwwlkwwlksb 30036 1wlkdlem4 30122 h1deoi 31531 bnj149 34908 subfacp1lem5 35249 cvmlift2lem1 35367 cvmlift2lem12 35379 lindsenlbs 37675 poimirlem28 37708 poimirlem32 37712 heibor1lem 37869 nadd1suc 43509 nregmodel 45134 usgrexmpl1lem 48145 usgrexmpl2lem 48150 isinito2lem 49623 setc1onsubc 49727 |
| Copyright terms: Public domain | W3C validator |