Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralsn | Structured version Visualization version GIF version |
Description: Convert a universal quantification restricted to a singleton to a substitution. (Contributed by NM, 27-Apr-2009.) |
Ref | Expression |
---|---|
ralsn.1 | ⊢ 𝐴 ∈ V |
ralsn.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ralsn | ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralsn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | ralsn.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
3 | 2 | ralsng 4609 | . 2 ⊢ (𝐴 ∈ V → (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ {𝐴}𝜑 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3429 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3431 df-sn 4562 |
This theorem is referenced by: elixpsn 8712 frfi 9046 dffi3 9177 ssttrcl 9460 ttrclss 9465 ttrclselem2 9471 fseqenlem1 9790 fpwwe2lem12 10408 hashbc 14175 hashf1lem1 14178 hashf1lem1OLD 14179 eqs1 14327 cshw1 14545 rpnnen2lem11 15943 drsdirfi 18033 0subg 18790 efgsp1 19353 dprd2da 19655 lbsextlem4 20433 ply1coe 21477 mat0dimcrng 21629 txkgen 22813 xkoinjcn 22848 isufil2 23069 ust0 23381 prdsxmetlem 23531 prdsbl 23657 finiunmbl 24718 xrlimcnp 26128 chtub 26370 2sqlem10 26586 dchrisum0flb 26668 pntpbnd1 26744 usgr1e 27622 nbgr2vtx1edg 27727 nbuhgr2vtx1edgb 27729 wlkl1loop 28014 crctcshwlkn0lem7 28189 2pthdlem1 28303 rusgrnumwwlkl1 28341 clwwlkccatlem 28361 clwwlkn2 28416 clwwlkel 28418 clwwlkwwlksb 28426 1wlkdlem4 28512 h1deoi 29919 bnj149 32863 subfacp1lem5 33154 cvmlift2lem1 33272 cvmlift2lem12 33284 xpord2ind 33802 xpord3ind 33808 naddcllem 33839 conway 34001 etasslt 34015 slerec 34021 bday1s 34033 madebdaylemlrcut 34087 lindsenlbs 35780 poimirlem28 35813 poimirlem32 35817 heibor1lem 35975 |
Copyright terms: Public domain | W3C validator |