MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimadmfo Structured version   Visualization version   GIF version

Theorem fimadmfo 6697
Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.)
Assertion
Ref Expression
fimadmfo (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))

Proof of Theorem fimadmfo
StepHypRef Expression
1 fdm 6609 . 2 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 ffn 6600 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
32adantr 481 . . . 4 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 Fn 𝐴)
4 dffn4 6694 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
53, 4sylib 217 . . 3 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴onto→ran 𝐹)
6 imaeq2 5965 . . . . . . 7 (𝐴 = dom 𝐹 → (𝐹𝐴) = (𝐹 “ dom 𝐹))
7 imadmrn 5979 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
86, 7eqtrdi 2794 . . . . . 6 (𝐴 = dom 𝐹 → (𝐹𝐴) = ran 𝐹)
98eqcoms 2746 . . . . 5 (dom 𝐹 = 𝐴 → (𝐹𝐴) = ran 𝐹)
109adantl 482 . . . 4 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹𝐴) = ran 𝐹)
11 foeq3 6686 . . . 4 ((𝐹𝐴) = ran 𝐹 → (𝐹:𝐴onto→(𝐹𝐴) ↔ 𝐹:𝐴onto→ran 𝐹))
1210, 11syl 17 . . 3 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹:𝐴onto→(𝐹𝐴) ↔ 𝐹:𝐴onto→ran 𝐹))
135, 12mpbird 256 . 2 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴onto→(𝐹𝐴))
141, 13mpdan 684 1 (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  dom cdm 5589  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  ontowfo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-fn 6436  df-f 6437  df-fo 6439
This theorem is referenced by:  wrdsymb  14245  fundcmpsurinjimaid  44863
  Copyright terms: Public domain W3C validator