MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimadmfo Structured version   Visualization version   GIF version

Theorem fimadmfo 6811
Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.)
Assertion
Ref Expression
fimadmfo (𝐹:𝐴⟢𝐡 β†’ 𝐹:𝐴–ontoβ†’(𝐹 β€œ 𝐴))

Proof of Theorem fimadmfo
StepHypRef Expression
1 fdm 6723 . 2 (𝐹:𝐴⟢𝐡 β†’ dom 𝐹 = 𝐴)
2 ffn 6714 . . . . 5 (𝐹:𝐴⟢𝐡 β†’ 𝐹 Fn 𝐴)
32adantr 481 . . . 4 ((𝐹:𝐴⟢𝐡 ∧ dom 𝐹 = 𝐴) β†’ 𝐹 Fn 𝐴)
4 dffn4 6808 . . . 4 (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–ontoβ†’ran 𝐹)
53, 4sylib 217 . . 3 ((𝐹:𝐴⟢𝐡 ∧ dom 𝐹 = 𝐴) β†’ 𝐹:𝐴–ontoβ†’ran 𝐹)
6 imaeq2 6053 . . . . . . 7 (𝐴 = dom 𝐹 β†’ (𝐹 β€œ 𝐴) = (𝐹 β€œ dom 𝐹))
7 imadmrn 6067 . . . . . . 7 (𝐹 β€œ dom 𝐹) = ran 𝐹
86, 7eqtrdi 2788 . . . . . 6 (𝐴 = dom 𝐹 β†’ (𝐹 β€œ 𝐴) = ran 𝐹)
98eqcoms 2740 . . . . 5 (dom 𝐹 = 𝐴 β†’ (𝐹 β€œ 𝐴) = ran 𝐹)
109adantl 482 . . . 4 ((𝐹:𝐴⟢𝐡 ∧ dom 𝐹 = 𝐴) β†’ (𝐹 β€œ 𝐴) = ran 𝐹)
11 foeq3 6800 . . . 4 ((𝐹 β€œ 𝐴) = ran 𝐹 β†’ (𝐹:𝐴–ontoβ†’(𝐹 β€œ 𝐴) ↔ 𝐹:𝐴–ontoβ†’ran 𝐹))
1210, 11syl 17 . . 3 ((𝐹:𝐴⟢𝐡 ∧ dom 𝐹 = 𝐴) β†’ (𝐹:𝐴–ontoβ†’(𝐹 β€œ 𝐴) ↔ 𝐹:𝐴–ontoβ†’ran 𝐹))
135, 12mpbird 256 . 2 ((𝐹:𝐴⟢𝐡 ∧ dom 𝐹 = 𝐴) β†’ 𝐹:𝐴–ontoβ†’(𝐹 β€œ 𝐴))
141, 13mpdan 685 1 (𝐹:𝐴⟢𝐡 β†’ 𝐹:𝐴–ontoβ†’(𝐹 β€œ 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541  dom cdm 5675  ran crn 5676   β€œ cima 5678   Fn wfn 6535  βŸΆwf 6536  β€“ontoβ†’wfo 6538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-fn 6543  df-f 6544  df-fo 6546
This theorem is referenced by:  wrdsymb  14488  fundcmpsurinjimaid  46065
  Copyright terms: Public domain W3C validator