| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimadmfo | Structured version Visualization version GIF version | ||
| Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) |
| Ref | Expression |
|---|---|
| fimadmfo | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6655 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 2 | ffn 6646 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 Fn 𝐴) |
| 4 | dffn4 6736 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴–onto→ran 𝐹) |
| 6 | imaeq2 6000 | . . . . . . 7 ⊢ (𝐴 = dom 𝐹 → (𝐹 “ 𝐴) = (𝐹 “ dom 𝐹)) | |
| 7 | imadmrn 6014 | . . . . . . 7 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 8 | 6, 7 | eqtrdi 2782 | . . . . . 6 ⊢ (𝐴 = dom 𝐹 → (𝐹 “ 𝐴) = ran 𝐹) |
| 9 | 8 | eqcoms 2739 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹 “ 𝐴) = ran 𝐹) |
| 11 | foeq3 6728 | . . . 4 ⊢ ((𝐹 “ 𝐴) = ran 𝐹 → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ 𝐹:𝐴–onto→ran 𝐹)) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ 𝐹:𝐴–onto→ran 𝐹)) |
| 13 | 5, 12 | mpbird 257 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
| 14 | 1, 13 | mpdan 687 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 dom cdm 5611 ran crn 5612 “ cima 5614 Fn wfn 6471 ⟶wf 6472 –onto→wfo 6474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fn 6479 df-f 6480 df-fo 6482 |
| This theorem is referenced by: wrdsymb 14444 imasmhm 33311 imasghm 33312 imasrhm 33313 imaslmhm 33314 r1pquslmic 33563 fundcmpsurinjimaid 47442 |
| Copyright terms: Public domain | W3C validator |