![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimadmfo | Structured version Visualization version GIF version |
Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) |
Ref | Expression |
---|---|
fimadmfo | β’ (πΉ:π΄βΆπ΅ β πΉ:π΄βontoβ(πΉ β π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6723 | . 2 β’ (πΉ:π΄βΆπ΅ β dom πΉ = π΄) | |
2 | ffn 6714 | . . . . 5 β’ (πΉ:π΄βΆπ΅ β πΉ Fn π΄) | |
3 | 2 | adantr 481 | . . . 4 β’ ((πΉ:π΄βΆπ΅ β§ dom πΉ = π΄) β πΉ Fn π΄) |
4 | dffn4 6808 | . . . 4 β’ (πΉ Fn π΄ β πΉ:π΄βontoβran πΉ) | |
5 | 3, 4 | sylib 217 | . . 3 β’ ((πΉ:π΄βΆπ΅ β§ dom πΉ = π΄) β πΉ:π΄βontoβran πΉ) |
6 | imaeq2 6053 | . . . . . . 7 β’ (π΄ = dom πΉ β (πΉ β π΄) = (πΉ β dom πΉ)) | |
7 | imadmrn 6067 | . . . . . . 7 β’ (πΉ β dom πΉ) = ran πΉ | |
8 | 6, 7 | eqtrdi 2788 | . . . . . 6 β’ (π΄ = dom πΉ β (πΉ β π΄) = ran πΉ) |
9 | 8 | eqcoms 2740 | . . . . 5 β’ (dom πΉ = π΄ β (πΉ β π΄) = ran πΉ) |
10 | 9 | adantl 482 | . . . 4 β’ ((πΉ:π΄βΆπ΅ β§ dom πΉ = π΄) β (πΉ β π΄) = ran πΉ) |
11 | foeq3 6800 | . . . 4 β’ ((πΉ β π΄) = ran πΉ β (πΉ:π΄βontoβ(πΉ β π΄) β πΉ:π΄βontoβran πΉ)) | |
12 | 10, 11 | syl 17 | . . 3 β’ ((πΉ:π΄βΆπ΅ β§ dom πΉ = π΄) β (πΉ:π΄βontoβ(πΉ β π΄) β πΉ:π΄βontoβran πΉ)) |
13 | 5, 12 | mpbird 256 | . 2 β’ ((πΉ:π΄βΆπ΅ β§ dom πΉ = π΄) β πΉ:π΄βontoβ(πΉ β π΄)) |
14 | 1, 13 | mpdan 685 | 1 β’ (πΉ:π΄βΆπ΅ β πΉ:π΄βontoβ(πΉ β π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 dom cdm 5675 ran crn 5676 β cima 5678 Fn wfn 6535 βΆwf 6536 βontoβwfo 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-fn 6543 df-f 6544 df-fo 6546 |
This theorem is referenced by: wrdsymb 14488 fundcmpsurinjimaid 46065 |
Copyright terms: Public domain | W3C validator |