| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimadmfo | Structured version Visualization version GIF version | ||
| Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) |
| Ref | Expression |
|---|---|
| fimadmfo | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6700 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 2 | ffn 6691 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 Fn 𝐴) |
| 4 | dffn4 6781 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴–onto→ran 𝐹) |
| 6 | imaeq2 6030 | . . . . . . 7 ⊢ (𝐴 = dom 𝐹 → (𝐹 “ 𝐴) = (𝐹 “ dom 𝐹)) | |
| 7 | imadmrn 6044 | . . . . . . 7 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 8 | 6, 7 | eqtrdi 2781 | . . . . . 6 ⊢ (𝐴 = dom 𝐹 → (𝐹 “ 𝐴) = ran 𝐹) |
| 9 | 8 | eqcoms 2738 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹 “ 𝐴) = ran 𝐹) |
| 11 | foeq3 6773 | . . . 4 ⊢ ((𝐹 “ 𝐴) = ran 𝐹 → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ 𝐹:𝐴–onto→ran 𝐹)) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ 𝐹:𝐴–onto→ran 𝐹)) |
| 13 | 5, 12 | mpbird 257 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
| 14 | 1, 13 | mpdan 687 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5641 ran crn 5642 “ cima 5644 Fn wfn 6509 ⟶wf 6510 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fn 6517 df-f 6518 df-fo 6520 |
| This theorem is referenced by: wrdsymb 14514 imasmhm 33332 imasghm 33333 imasrhm 33334 imaslmhm 33335 r1pquslmic 33583 fundcmpsurinjimaid 47416 |
| Copyright terms: Public domain | W3C validator |