| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimadmfo | Structured version Visualization version GIF version | ||
| Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.) |
| Ref | Expression |
|---|---|
| fimadmfo | ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fdm 6715 | . 2 ⊢ (𝐹:𝐴⟶𝐵 → dom 𝐹 = 𝐴) | |
| 2 | ffn 6706 | . . . . 5 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 Fn 𝐴) |
| 4 | dffn4 6796 | . . . 4 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹:𝐴–onto→ran 𝐹) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴–onto→ran 𝐹) |
| 6 | imaeq2 6043 | . . . . . . 7 ⊢ (𝐴 = dom 𝐹 → (𝐹 “ 𝐴) = (𝐹 “ dom 𝐹)) | |
| 7 | imadmrn 6057 | . . . . . . 7 ⊢ (𝐹 “ dom 𝐹) = ran 𝐹 | |
| 8 | 6, 7 | eqtrdi 2786 | . . . . . 6 ⊢ (𝐴 = dom 𝐹 → (𝐹 “ 𝐴) = ran 𝐹) |
| 9 | 8 | eqcoms 2743 | . . . . 5 ⊢ (dom 𝐹 = 𝐴 → (𝐹 “ 𝐴) = ran 𝐹) |
| 10 | 9 | adantl 481 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹 “ 𝐴) = ran 𝐹) |
| 11 | foeq3 6788 | . . . 4 ⊢ ((𝐹 “ 𝐴) = ran 𝐹 → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ 𝐹:𝐴–onto→ran 𝐹)) | |
| 12 | 10, 11 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹:𝐴–onto→(𝐹 “ 𝐴) ↔ 𝐹:𝐴–onto→ran 𝐹)) |
| 13 | 5, 12 | mpbird 257 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
| 14 | 1, 13 | mpdan 687 | 1 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹:𝐴–onto→(𝐹 “ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 dom cdm 5654 ran crn 5655 “ cima 5657 Fn wfn 6526 ⟶wf 6527 –onto→wfo 6529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-fn 6534 df-f 6535 df-fo 6537 |
| This theorem is referenced by: wrdsymb 14560 imasmhm 33369 imasghm 33370 imasrhm 33371 imaslmhm 33372 r1pquslmic 33620 fundcmpsurinjimaid 47425 |
| Copyright terms: Public domain | W3C validator |