MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimadmfo Structured version   Visualization version   GIF version

Theorem fimadmfo 6799
Description: A function is a function onto the image of its domain. (Contributed by AV, 1-Dec-2022.)
Assertion
Ref Expression
fimadmfo (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))

Proof of Theorem fimadmfo
StepHypRef Expression
1 fdm 6715 . 2 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
2 ffn 6706 . . . . 5 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
32adantr 480 . . . 4 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹 Fn 𝐴)
4 dffn4 6796 . . . 4 (𝐹 Fn 𝐴𝐹:𝐴onto→ran 𝐹)
53, 4sylib 218 . . 3 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴onto→ran 𝐹)
6 imaeq2 6043 . . . . . . 7 (𝐴 = dom 𝐹 → (𝐹𝐴) = (𝐹 “ dom 𝐹))
7 imadmrn 6057 . . . . . . 7 (𝐹 “ dom 𝐹) = ran 𝐹
86, 7eqtrdi 2786 . . . . . 6 (𝐴 = dom 𝐹 → (𝐹𝐴) = ran 𝐹)
98eqcoms 2743 . . . . 5 (dom 𝐹 = 𝐴 → (𝐹𝐴) = ran 𝐹)
109adantl 481 . . . 4 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹𝐴) = ran 𝐹)
11 foeq3 6788 . . . 4 ((𝐹𝐴) = ran 𝐹 → (𝐹:𝐴onto→(𝐹𝐴) ↔ 𝐹:𝐴onto→ran 𝐹))
1210, 11syl 17 . . 3 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → (𝐹:𝐴onto→(𝐹𝐴) ↔ 𝐹:𝐴onto→ran 𝐹))
135, 12mpbird 257 . 2 ((𝐹:𝐴𝐵 ∧ dom 𝐹 = 𝐴) → 𝐹:𝐴onto→(𝐹𝐴))
141, 13mpdan 687 1 (𝐹:𝐴𝐵𝐹:𝐴onto→(𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  dom cdm 5654  ran crn 5655  cima 5657   Fn wfn 6526  wf 6527  ontowfo 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fn 6534  df-f 6535  df-fo 6537
This theorem is referenced by:  wrdsymb  14560  imasmhm  33369  imasghm  33370  imasrhm  33371  imaslmhm  33372  r1pquslmic  33620  fundcmpsurinjimaid  47425
  Copyright terms: Public domain W3C validator