HomeHome Metamath Proof Explorer
Theorem List (p. 69 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 6801-6900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcsbfv 6801* Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.)
𝐴 / 𝑥(𝐹𝑥) = (𝐹𝐴)
 
Theoremfunbrfv 6802 The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
(Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹𝐴) = 𝐵))
 
Theoremfunopfv 6803 The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.)
(Fun 𝐹 → (⟨𝐴, 𝐵⟩ ∈ 𝐹 → (𝐹𝐴) = 𝐵))
 
Theoremfnbrfvb 6804 Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶𝐵𝐹𝐶))
 
Theoremfnopfvb 6805 Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = 𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐹))
 
Theoremfunbrfvb 6806 Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵𝐴𝐹𝐵))
 
Theoremfunopfvb 6807 Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of [Monk1] p. 42. (Contributed by NM, 26-Jan-1997.)
((Fun 𝐹𝐴 ∈ dom 𝐹) → ((𝐹𝐴) = 𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝐹))
 
Theoremfnbrfvb2 6808 Version of fnbrfvb 6804 for functions on Cartesian products: function value expressed as a binary relation. See fnbrovb 7304 for the form when 𝐹 is seen as a binary operation. (Contributed by BJ, 15-Feb-2022.)
((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴𝑉𝐵𝑊)) → ((𝐹‘⟨𝐴, 𝐵⟩) = 𝐶 ↔ ⟨𝐴, 𝐵𝐹𝐶))
 
Theoremfunbrfv2b 6809 Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.)
(Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹𝐴) = 𝐵)))
 
Theoremdffn5 6810* Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfnrnfv 6811* The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
(𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = (𝐹𝑥)})
 
Theoremfvelrnb 6812* A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.)
(𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥𝐴 (𝐹𝑥) = 𝐵))
 
Theoremfoelrni 6813* A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.)
((𝐹:𝐴onto𝐵𝑌𝐵) → ∃𝑥𝐴 (𝐹𝑥) = 𝑌)
 
Theoremdfimafn 6814* Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = {𝑦 ∣ ∃𝑥𝐴 (𝐹𝑥) = 𝑦})
 
Theoremdfimafn2 6815* Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → (𝐹𝐴) = 𝑥𝐴 {(𝐹𝑥)})
 
Theoremfunimass4 6816* Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.)
((Fun 𝐹𝐴 ⊆ dom 𝐹) → ((𝐹𝐴) ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfvelima 6817* Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
((Fun 𝐹𝐴 ∈ (𝐹𝐵)) → ∃𝑥𝐵 (𝐹𝑥) = 𝐴)
 
Theoremfvelimad 6818* Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝑥𝐹    &   (𝜑𝐹 Fn 𝐴)    &   (𝜑𝐶 ∈ (𝐹𝐵))       (𝜑 → ∃𝑥 ∈ (𝐴𝐵)(𝐹𝑥) = 𝐶)
 
Theoremfeqmptd 6819* Deduction form of dffn5 6810. (Contributed by Mario Carneiro, 8-Jan-2015.)
(𝜑𝐹:𝐴𝐵)       (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfeqresmpt 6820* Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶) = (𝑥𝐶 ↦ (𝐹𝑥)))
 
Theoremfeqmptdf 6821 Deduction form of dffn5f 6822. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.)
𝑥𝐴    &   𝑥𝐹    &   (𝜑𝐹:𝐴𝐵)       (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremdffn5f 6822* Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.)
𝑥𝐹       (𝐹 Fn 𝐴𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
 
Theoremfvelimab 6823* Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
 
Theoremfvelimabd 6824* Deduction form of fvelimab 6823. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐵𝐴)       (𝜑 → (𝐶 ∈ (𝐹𝐵) ↔ ∃𝑥𝐵 (𝐹𝑥) = 𝐶))
 
Theoremunima 6825 Image of a union. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ (𝐵𝐶)) = ((𝐹𝐵) ∪ (𝐹𝐶)))
 
Theoremfvi 6826 The value of the identity function. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝐴𝑉 → ( I ‘𝐴) = 𝐴)
 
Theoremfviss 6827 The value of the identity function is a subset of the argument. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 27-Feb-2016.)
( I ‘𝐴) ⊆ 𝐴
 
Theoremfniinfv 6828* The indexed intersection of a function's values is the intersection of its range. (Contributed by NM, 20-Oct-2005.)
(𝐹 Fn 𝐴 𝑥𝐴 (𝐹𝑥) = ran 𝐹)
 
Theoremfnsnfv 6829 Singleton of function value. (Contributed by NM, 22-May-1998.) (Proof shortened by Scott Fenton, 8-Aug-2024.)
((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
 
TheoremfnsnfvOLD 6830 Obsolete version of fnsnfv 6829 as of 8-Aug-2024. (Contributed by NM, 22-May-1998.) (New usage is discouraged.) (Proof modification is discouraged.)
((𝐹 Fn 𝐴𝐵𝐴) → {(𝐹𝐵)} = (𝐹 “ {𝐵}))
 
Theoremopabiotafun 6831* Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 19-May-2015.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}       Fun 𝐹
 
Theoremopabiotadm 6832* Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}       dom 𝐹 = {𝑥 ∣ ∃!𝑦𝜑}
 
Theoremopabiota 6833* Define a function whose value is "the unique 𝑦 such that 𝜑(𝑥, 𝑦)". (Contributed by NM, 16-Nov-2013.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ {𝑦𝜑} = {𝑦}}    &   (𝑥 = 𝐵 → (𝜑𝜓))       (𝐵 ∈ dom 𝐹 → (𝐹𝐵) = (℩𝑦𝜓))
 
Theoremfnimapr 6834 The image of a pair under a function. (Contributed by Jeff Madsen, 6-Jan-2011.)
((𝐹 Fn 𝐴𝐵𝐴𝐶𝐴) → (𝐹 “ {𝐵, 𝐶}) = {(𝐹𝐵), (𝐹𝐶)})
 
Theoremssimaex 6835* The existence of a subimage. (Contributed by NM, 8-Apr-2007.)
𝐴 ∈ V       ((Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
 
Theoremssimaexg 6836* The existence of a subimage. (Contributed by FL, 15-Apr-2007.)
((𝐴𝐶 ∧ Fun 𝐹𝐵 ⊆ (𝐹𝐴)) → ∃𝑥(𝑥𝐴𝐵 = (𝐹𝑥)))
 
Theoremfunfv 6837 A simplified expression for the value of a function when we know it is a function. (Contributed by NM, 22-May-1998.)
(Fun 𝐹 → (𝐹𝐴) = (𝐹 “ {𝐴}))
 
Theoremfunfv2 6838* The value of a function. Definition of function value in [Enderton] p. 43. (Contributed by NM, 22-May-1998.)
(Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
 
Theoremfunfv2f 6839 The value of a function. Version of funfv2 6838 using a bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 19-Feb-2006.)
𝑦𝐴    &   𝑦𝐹       (Fun 𝐹 → (𝐹𝐴) = {𝑦𝐴𝐹𝑦})
 
Theoremfvun 6840 Value of the union of two functions when the domains are separate. (Contributed by FL, 7-Nov-2011.)
(((Fun 𝐹 ∧ Fun 𝐺) ∧ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((𝐹𝐺)‘𝐴) = ((𝐹𝐴) ∪ (𝐺𝐴)))
 
Theoremfvun1 6841 The value of a union when the argument is in the first domain. (Contributed by Scott Fenton, 29-Jun-2013.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐴)) → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
 
Theoremfvun2 6842 The value of a union when the argument is in the second domain. (Contributed by Scott Fenton, 29-Jun-2013.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ ((𝐴𝐵) = ∅ ∧ 𝑋𝐵)) → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
 
Theoremfvun1d 6843 The value of a union when the argument is in the first domain, a deduction version. (Contributed by metakunt, 28-May-2024.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑋𝐴)       (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐹𝑋))
 
Theoremfvun2d 6844 The value of a union when the argument is in the second domain, a deduction version. (Contributed by metakunt, 28-May-2024.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐵)    &   (𝜑 → (𝐴𝐵) = ∅)    &   (𝜑𝑋𝐵)       (𝜑 → ((𝐹𝐺)‘𝑋) = (𝐺𝑋))
 
Theoremdffv2 6845 Alternate definition of function value df-fv 6426 that doesn't require dummy variables. (Contributed by NM, 4-Aug-2010.)
(𝐹𝐴) = ((𝐹 “ {𝐴}) ∖ (((𝐹 ↾ {𝐴}) ∘ (𝐹 ↾ {𝐴})) ∖ I ))
 
Theoremdmfco 6846 Domains of a function composition. (Contributed by NM, 27-Jan-1997.)
((Fun 𝐺𝐴 ∈ dom 𝐺) → (𝐴 ∈ dom (𝐹𝐺) ↔ (𝐺𝐴) ∈ dom 𝐹))
 
Theoremfvco2 6847 Value of a function composition. Similar to second part of Theorem 3H of [Enderton] p. 47. (Contributed by NM, 9-Oct-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by Stefan O'Rear, 16-Oct-2014.)
((𝐺 Fn 𝐴𝑋𝐴) → ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋)))
 
Theoremfvco 6848 Value of a function composition. Similar to Exercise 5 of [TakeutiZaring] p. 28. (Contributed by NM, 22-Apr-2006.) (Proof shortened by Mario Carneiro, 26-Dec-2014.)
((Fun 𝐺𝐴 ∈ dom 𝐺) → ((𝐹𝐺)‘𝐴) = (𝐹‘(𝐺𝐴)))
 
Theoremfvco3 6849 Value of a function composition. (Contributed by NM, 3-Jan-2004.) (Revised by Mario Carneiro, 26-Dec-2014.)
((𝐺:𝐴𝐵𝐶𝐴) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
 
Theoremfvco3d 6850 Value of a function composition. Deduction form of fvco3 6849. (Contributed by Stanislas Polu, 9-Mar-2020.)
(𝜑𝐺:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
 
Theoremfvco4i 6851 Conditions for a composition to be expandable without conditions on the argument. (Contributed by Stefan O'Rear, 31-Mar-2015.)
∅ = (𝐹‘∅)    &   Fun 𝐺       ((𝐹𝐺)‘𝑋) = (𝐹‘(𝐺𝑋))
 
Theoremfvopab3g 6852* Value of a function given by ordered-pair class abstraction. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑥𝐶 → ∃!𝑦𝜑)    &   𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}       ((𝐴𝐶𝐵𝐷) → ((𝐹𝐴) = 𝐵𝜒))
 
Theoremfvopab3ig 6853* Value of a function given by ordered-pair class abstraction. (Contributed by NM, 23-Oct-1999.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑥𝐶 → ∃*𝑦𝜑)    &   𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐶𝜑)}       ((𝐴𝐶𝐵𝐷) → (𝜒 → (𝐹𝐴) = 𝐵))
 
Theorembrfvopabrbr 6854* The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 7308. (Contributed by AV, 29-Oct-2021.)
(𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)}    &   ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))    &   Rel (𝐵𝑍)       (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓))
 
Theoremfvmptg 6855* Value of a function given in maps-to notation. (Contributed by NM, 2-Oct-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)       ((𝐴𝐷𝐶𝑅) → (𝐹𝐴) = 𝐶)
 
Theoremfvmpti 6856* Value of a function given in maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)       (𝐴𝐷 → (𝐹𝐴) = ( I ‘𝐶))
 
Theoremfvmpt 6857* Value of a function given in maps-to notation. (Contributed by NM, 17-Aug-2011.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)    &   𝐶 ∈ V       (𝐴𝐷 → (𝐹𝐴) = 𝐶)
 
Theoremfvmpt2f 6858 Value of a function given by the maps-to notation. (Contributed by Thierry Arnoux, 9-Mar-2017.)
𝑥𝐴       ((𝑥𝐴𝐵𝐶) → ((𝑥𝐴𝐵)‘𝑥) = 𝐵)
 
Theoremfvtresfn 6859* Functionality of a tuple-restriction function. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐵 ↦ (𝑥𝑉))       (𝑋𝐵 → (𝐹𝑋) = (𝑋𝑉))
 
Theoremfvmpts 6860* Value of a function given in maps-to notation, using explicit class substitution. (Contributed by Scott Fenton, 17-Jul-2013.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐶𝐵)       ((𝐴𝐶𝐴 / 𝑥𝐵𝑉) → (𝐹𝐴) = 𝐴 / 𝑥𝐵)
 
Theoremfvmpt3 6861* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Stefan O'Rear, 30-Jan-2015.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)    &   (𝑥𝐷𝐵𝑉)       (𝐴𝐷 → (𝐹𝐴) = 𝐶)
 
Theoremfvmpt3i 6862* Value of a function given in maps-to notation, with a slightly different sethood condition. (Contributed by Mario Carneiro, 11-Sep-2015.)
(𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)    &   𝐵 ∈ V       (𝐴𝐷 → (𝐹𝐴) = 𝐶)
 
Theoremfvmptdf 6863* Deduction version of fvmptd 6864 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by AV, 29-Mar-2024.)
(𝜑𝐹 = (𝑥𝐷𝐵))    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)    &   𝑥𝜑    &   𝑥𝐴    &   𝑥𝐶       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremfvmptd 6864* Deduction version of fvmpt 6857. (Contributed by Scott Fenton, 18-Feb-2013.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by AV, 29-Mar-2024.)
(𝜑𝐹 = (𝑥𝐷𝐵))    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremfvmptd2 6865* Deduction version of fvmpt 6857 (where the definition of the mapping does not depend on the common antecedent 𝜑). (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝐹 = (𝑥𝐷𝐵)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremmptrcl 6866* Reverse closure for a mapping: If the function value of a mapping has a member, the argument belongs to the base class of the mapping. (Contributed by AV, 4-Apr-2020.)
𝐹 = (𝑥𝐴𝐵)       (𝐼 ∈ (𝐹𝑋) → 𝑋𝐴)
 
Theoremfvmpt2i 6867* Value of a function given by the maps-to notation. (Contributed by Mario Carneiro, 23-Apr-2014.)
𝐹 = (𝑥𝐴𝐵)       (𝑥𝐴 → (𝐹𝑥) = ( I ‘𝐵))
 
Theoremfvmpt2 6868* Value of a function given by the maps-to notation. (Contributed by FL, 21-Jun-2010.)
𝐹 = (𝑥𝐴𝐵)       ((𝑥𝐴𝐵𝐶) → (𝐹𝑥) = 𝐵)
 
Theoremfvmptss 6869* If all the values of the mapping are subsets of a class 𝐶, then so is any evaluation of the mapping, even if 𝐷 is not in the base set 𝐴. (Contributed by Mario Carneiro, 13-Feb-2015.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝐶 → (𝐹𝐷) ⊆ 𝐶)
 
Theoremfvmpt2d 6870* Deduction version of fvmpt2 6868. (Contributed by Thierry Arnoux, 8-Dec-2016.)
(𝜑𝐹 = (𝑥𝐴𝐵))    &   ((𝜑𝑥𝐴) → 𝐵𝑉)       ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
 
Theoremfvmptex 6871* Express a function 𝐹 whose value 𝐵 may not always be a set in terms of another function 𝐺 for which sethood is guaranteed. (Note that ( I ‘𝐵) is just shorthand for if(𝐵 ∈ V, 𝐵, ∅), and it is always a set by fvex 6769.) Note also that these functions are not the same; wherever 𝐵(𝐶) is not a set, 𝐶 is not in the domain of 𝐹 (so it evaluates to the empty set), but 𝐶 is in the domain of 𝐺, and 𝐺(𝐶) is defined to be the empty set. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Mario Carneiro, 23-Apr-2014.)
𝐹 = (𝑥𝐴𝐵)    &   𝐺 = (𝑥𝐴 ↦ ( I ‘𝐵))       (𝐹𝐶) = (𝐺𝐶)
 
Theoremfvmptd3f 6872* Alternate deduction version of fvmpt 6857 with three nonfreeness hypotheses instead of distinct variable conditions. (Contributed by AV, 19-Jan-2022.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))    &   𝑥𝐹    &   𝑥𝜓    &   𝑥𝜑       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
 
Theoremfvmptd2f 6873* Alternate deduction version of fvmpt 6857, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.) (Proof shortened by AV, 19-Jan-2022.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))    &   𝑥𝐹    &   𝑥𝜓       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
 
Theoremfvmptdv 6874* Alternate deduction version of fvmpt 6857, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → ((𝐹𝐴) = 𝐵𝜓))       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → 𝜓))
 
Theoremfvmptdv2 6875* Alternate deduction version of fvmpt 6857, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐷)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝑉)    &   ((𝜑𝑥 = 𝐴) → 𝐵 = 𝐶)       (𝜑 → (𝐹 = (𝑥𝐷𝐵) → (𝐹𝐴) = 𝐶))
 
Theoremmpteqb 6876* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnfv 6891. (Contributed by Mario Carneiro, 14-Nov-2014.)
(∀𝑥𝐴 𝐵𝑉 → ((𝑥𝐴𝐵) = (𝑥𝐴𝐶) ↔ ∀𝑥𝐴 𝐵 = 𝐶))
 
Theoremfvmptt 6877* Closed theorem form of fvmpt 6857. (Contributed by Scott Fenton, 21-Feb-2013.) (Revised by Mario Carneiro, 11-Sep-2015.)
((∀𝑥(𝑥 = 𝐴𝐵 = 𝐶) ∧ 𝐹 = (𝑥𝐷𝐵) ∧ (𝐴𝐷𝐶𝑉)) → (𝐹𝐴) = 𝐶)
 
Theoremfvmptf 6878* Value of a function given by an ordered-pair class abstraction. This version of fvmptg 6855 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 8-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐴    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)       ((𝐴𝐷𝐶𝑉) → (𝐹𝐴) = 𝐶)
 
Theoremfvmptnf 6879* The value of a function given by an ordered-pair class abstraction is the empty set when the class it would otherwise map to is a proper class. This version of fvmptn 6881 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝑥𝐴    &   𝑥𝐶    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥𝐷𝐵)       𝐶 ∈ V → (𝐹𝐴) = ∅)
 
Theoremfvmptd3 6880* Deduction version of fvmpt 6857. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
𝐹 = (𝑥𝐷𝐵)    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   (𝜑𝐴𝐷)    &   (𝜑𝐶𝑉)       (𝜑 → (𝐹𝐴) = 𝐶)
 
Theoremfvmptn 6881* This somewhat non-intuitive theorem tells us the value of its function is the empty set when the class 𝐶 it would otherwise map to is a proper class. This is a technical lemma that can help eliminate redundant sethood antecedents otherwise required by fvmptg 6855. (Contributed by NM, 21-Oct-2003.) (Revised by Mario Carneiro, 9-Sep-2013.)
(𝑥 = 𝐷𝐵 = 𝐶)    &   𝐹 = (𝑥𝐴𝐵)       𝐶 ∈ V → (𝐹𝐷) = ∅)
 
Theoremfvmptss2 6882* A mapping always evaluates to a subset of the substituted expression in the mapping, even if this is a proper class, or we are out of the domain. (Contributed by Mario Carneiro, 13-Feb-2015.)
(𝑥 = 𝐷𝐵 = 𝐶)    &   𝐹 = (𝑥𝐴𝐵)       (𝐹𝐷) ⊆ 𝐶
 
Theoremelfvmptrab1w 6883* Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Version of elfvmptrab1 6884 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (Revised by Gino Giotto, 26-Jan-2024.)
𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})    &   (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)       (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
 
Theoremelfvmptrab1 6884* Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. Here, the base set of the class abstraction depends on the argument of the function. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker elfvmptrab1w 6883 when possible. (Contributed by Alexander van der Vekens, 15-Jul-2018.) (New usage is discouraged.)
𝐹 = (𝑥𝑉 ↦ {𝑦𝑥 / 𝑚𝑀𝜑})    &   (𝑋𝑉𝑋 / 𝑚𝑀 ∈ V)       (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑋 / 𝑚𝑀))
 
Theoremelfvmptrab 6885* Implications for the value of a function defined by the maps-to notation with a class abstraction as a result having an element. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
𝐹 = (𝑥𝑉 ↦ {𝑦𝑀𝜑})    &   (𝑋𝑉𝑀 ∈ V)       (𝑌 ∈ (𝐹𝑋) → (𝑋𝑉𝑌𝑀))
 
Theoremfvopab4ndm 6886* Value of a function given by an ordered-pair class abstraction, outside of its domain. (Contributed by NM, 28-Mar-2008.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}       𝐵𝐴 → (𝐹𝐵) = ∅)
 
Theoremfvmptndm 6887* Value of a function given by the maps-to notation, outside of its domain. (Contributed by AV, 31-Dec-2020.)
𝐹 = (𝑥𝐴𝐵)       𝑋𝐴 → (𝐹𝑋) = ∅)
 
Theoremfvmptrabfv 6888* Value of a function mapping a set to a class abstraction restricting the value of another function. (Contributed by AV, 18-Feb-2022.)
𝐹 = (𝑥 ∈ V ↦ {𝑦 ∈ (𝐺𝑥) ∣ 𝜑})    &   (𝑥 = 𝑋 → (𝜑𝜓))       (𝐹𝑋) = {𝑦 ∈ (𝐺𝑋) ∣ 𝜓}
 
Theoremfvopab5 6889* The value of a function that is expressed as an ordered pair abstraction. (Contributed by NM, 19-Feb-2006.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}    &   (𝑥 = 𝐴 → (𝜑𝜓))       (𝐴𝑉 → (𝐹𝐴) = (℩𝑦𝜓))
 
Theoremfvopab6 6890* Value of a function given by ordered-pair class abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝜑𝑦 = 𝐵)}    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑥 = 𝐴𝐵 = 𝐶)       ((𝐴𝐷𝐶𝑅𝜓) → (𝐹𝐴) = 𝐶)
 
Theoremeqfnfv 6891* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremeqfnfv2 6892* Equality of functions is determined by their values. Exercise 4 of [TakeutiZaring] p. 28. (Contributed by NM, 3-Aug-1994.) (Revised by Mario Carneiro, 31-Aug-2015.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐴 = 𝐵 ∧ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥))))
 
Theoremeqfnfv3 6893* Derive equality of functions from equality of their values. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → (𝐹 = 𝐺 ↔ (𝐵𝐴 ∧ ∀𝑥𝐴 (𝑥𝐵 ∧ (𝐹𝑥) = (𝐺𝑥)))))
 
Theoremeqfnfvd 6894* Deduction for equality of functions. (Contributed by Mario Carneiro, 24-Jul-2014.)
(𝜑𝐹 Fn 𝐴)    &   (𝜑𝐺 Fn 𝐴)    &   ((𝜑𝑥𝐴) → (𝐹𝑥) = (𝐺𝑥))       (𝜑𝐹 = 𝐺)
 
Theoremeqfnfv2f 6895* Equality of functions is determined by their values. Special case of Exercise 4 of [TakeutiZaring] p. 28 (with domain equality omitted). This version of eqfnfv 6891 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 29-Jan-2004.)
𝑥𝐹    &   𝑥𝐺       ((𝐹 Fn 𝐴𝐺 Fn 𝐴) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremeqfunfv 6896* Equality of functions is determined by their values. (Contributed by Scott Fenton, 19-Jun-2011.)
((Fun 𝐹 ∧ Fun 𝐺) → (𝐹 = 𝐺 ↔ (dom 𝐹 = dom 𝐺 ∧ ∀𝑥 ∈ dom 𝐹(𝐹𝑥) = (𝐺𝑥))))
 
Theoremfvreseq0 6897* Equality of restricted functions is determined by their values (for functions with different domains). (Contributed by AV, 6-Jan-2019.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐶) ∧ (𝐵𝐴𝐵𝐶)) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremfvreseq1 6898* Equality of a function restricted to the domain of another function. (Contributed by AV, 6-Jan-2019.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐵) ∧ 𝐵𝐴) → ((𝐹𝐵) = 𝐺 ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremfvreseq 6899* Equality of restricted functions is determined by their values. (Contributed by NM, 3-Aug-1994.) (Proof shortened by AV, 4-Mar-2019.)
(((𝐹 Fn 𝐴𝐺 Fn 𝐴) ∧ 𝐵𝐴) → ((𝐹𝐵) = (𝐺𝐵) ↔ ∀𝑥𝐵 (𝐹𝑥) = (𝐺𝑥)))
 
Theoremfnmptfvd 6900* A function with a given domain is a mapping defined by its function values. (Contributed by AV, 1-Mar-2019.)
(𝜑𝑀 Fn 𝐴)    &   (𝑖 = 𝑎𝐷 = 𝐶)    &   ((𝜑𝑖𝐴) → 𝐷𝑈)    &   ((𝜑𝑎𝐴) → 𝐶𝑉)       (𝜑 → (𝑀 = (𝑎𝐴𝐶) ↔ ∀𝑖𝐴 (𝑀𝑖) = 𝐷))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >