| Metamath
Proof Explorer Theorem List (p. 69 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | f10 6801 | The empty set maps one-to-one into any class. (Contributed by NM, 7-Apr-1998.) |
| ⊢ ∅:∅–1-1→𝐴 | ||
| Theorem | f10d 6802 | The empty set maps one-to-one into any class, deduction version. (Contributed by AV, 25-Nov-2020.) |
| ⊢ (𝜑 → 𝐹 = ∅) ⇒ ⊢ (𝜑 → 𝐹:dom 𝐹–1-1→𝐴) | ||
| Theorem | f1o00 6803 | One-to-one onto mapping of the empty set. (Contributed by NM, 15-Apr-1998.) |
| ⊢ (𝐹:∅–1-1-onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | ||
| Theorem | fo00 6804 | Onto mapping of the empty set. (Contributed by NM, 22-Mar-2006.) |
| ⊢ (𝐹:∅–onto→𝐴 ↔ (𝐹 = ∅ ∧ 𝐴 = ∅)) | ||
| Theorem | f1o0 6805 | One-to-one onto mapping of the empty set. (Contributed by NM, 10-Sep-2004.) |
| ⊢ ∅:∅–1-1-onto→∅ | ||
| Theorem | f1oi 6806 | A restriction of the identity relation is a one-to-one onto function. (Contributed by NM, 30-Apr-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ ( I ↾ 𝐴):𝐴–1-1-onto→𝐴 | ||
| Theorem | f1ovi 6807 | The identity relation is a one-to-one onto function on the universe. (Contributed by NM, 16-May-2004.) |
| ⊢ I :V–1-1-onto→V | ||
| Theorem | f1osn 6808 | A singleton of an ordered pair is one-to-one onto function. (Contributed by NM, 18-May-1998.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵} | ||
| Theorem | f1osng 6809 | A singleton of an ordered pair is one-to-one onto function. (Contributed by Mario Carneiro, 12-Jan-2013.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1-onto→{𝐵}) | ||
| Theorem | f1sng 6810 | A singleton of an ordered pair is a one-to-one function. (Contributed by AV, 17-Apr-2021.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉}:{𝐴}–1-1→𝑊) | ||
| Theorem | fsnd 6811 | A singleton of an ordered pair is a function. (Contributed by AV, 17-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → {〈𝐴, 𝐵〉}:{𝐴}⟶𝑊) | ||
| Theorem | f1oprswap 6812 | A two-element swap is a bijection on a pair. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {〈𝐴, 𝐵〉, 〈𝐵, 𝐴〉}:{𝐴, 𝐵}–1-1-onto→{𝐴, 𝐵}) | ||
| Theorem | f1oprg 6813 | An unordered pair of ordered pairs with different elements is a one-to-one onto function, analogous to f1oprswap 6812. (Contributed by Alexander van der Vekens, 14-Aug-2017.) |
| ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑌)) → ((𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐷) → {〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉}:{𝐴, 𝐶}–1-1-onto→{𝐵, 𝐷})) | ||
| Theorem | tz6.12-2 6814* | Function value when 𝐹 is not a function. Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | ||
| Theorem | fveu 6815* | The value of a function at a unique point. (Contributed by Scott Fenton, 6-Oct-2017.) |
| ⊢ (∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∪ {𝑥 ∣ 𝐴𝐹𝑥}) | ||
| Theorem | brprcneu 6816* | If 𝐴 is a proper class and 𝐹 is any class, then there is no unique set which is related to 𝐴 through the binary relation 𝐹. See brprcneuALT 6817 for a proof that uses ax-pow 5307 instead of ax-pr 5374. (Contributed by Scott Fenton, 7-Oct-2017.) |
| ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | ||
| Theorem | brprcneuALT 6817* | Alternate proof of brprcneu 6816 using ax-pow 5307 instead of ax-pr 5374. (Contributed by Scott Fenton, 7-Oct-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | ||
| Theorem | fvprc 6818 | A function's value at a proper class is the empty set. See fvprcALT 6819 for a proof that uses ax-pow 5307 instead of ax-pr 5374. (Contributed by NM, 20-May-1998.) Avoid ax-pow 5307. (Revised by BTernaryTau, 3-Aug-2024.) (Proof shortened by BTernaryTau, 3-Dec-2024.) |
| ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | ||
| Theorem | fvprcALT 6819 | Alternate proof of fvprc 6818 using ax-pow 5307 instead of ax-pr 5374. (Contributed by NM, 20-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) | ||
| Theorem | rnfvprc 6820 | The range of a function value at a proper class is empty. (Contributed by AV, 20-Aug-2022.) |
| ⊢ 𝑌 = (𝐹‘𝑋) ⇒ ⊢ (¬ 𝑋 ∈ V → ran 𝑌 = ∅) | ||
| Theorem | fv2 6821* | Alternate definition of function value. Definition 10.11 of [Quine] p. 68. (Contributed by NM, 30-Apr-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ ∀𝑦(𝐴𝐹𝑦 ↔ 𝑦 = 𝑥)} | ||
| Theorem | dffv3 6822* | A definition of function value in terms of iota. (Contributed by Scott Fenton, 19-Feb-2013.) |
| ⊢ (𝐹‘𝐴) = (℩𝑥𝑥 ∈ (𝐹 “ {𝐴})) | ||
| Theorem | dffv4 6823* | The previous definition of function value, from before the ℩ operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 6047), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.) |
| ⊢ (𝐹‘𝐴) = ∪ {𝑥 ∣ (𝐹 “ {𝐴}) = {𝑥}} | ||
| Theorem | elfv 6824* | Membership in a function value. (Contributed by NM, 30-Apr-2004.) |
| ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | ||
| Theorem | fveq1 6825 | Equality theorem for function value. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (𝐹 = 𝐺 → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | fveq2 6826 | Equality theorem for function value. (Contributed by NM, 29-Dec-1996.) |
| ⊢ (𝐴 = 𝐵 → (𝐹‘𝐴) = (𝐹‘𝐵)) | ||
| Theorem | fveq1i 6827 | Equality inference for function value. (Contributed by NM, 2-Sep-2003.) |
| ⊢ 𝐹 = 𝐺 ⇒ ⊢ (𝐹‘𝐴) = (𝐺‘𝐴) | ||
| Theorem | fveq1d 6828 | Equality deduction for function value. (Contributed by NM, 2-Sep-2003.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | fveq2i 6829 | Equality inference for function value. (Contributed by NM, 28-Jul-1999.) |
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐹‘𝐴) = (𝐹‘𝐵) | ||
| Theorem | fveq2d 6830 | Equality deduction for function value. (Contributed by NM, 29-May-1999.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐵)) | ||
| Theorem | 2fveq3 6831 | Equality theorem for nested function values. (Contributed by AV, 14-Aug-2022.) |
| ⊢ (𝐴 = 𝐵 → (𝐹‘(𝐺‘𝐴)) = (𝐹‘(𝐺‘𝐵))) | ||
| Theorem | fveq12i 6832 | Equality deduction for function value. (Contributed by FL, 27-Jun-2014.) |
| ⊢ 𝐹 = 𝐺 & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐹‘𝐴) = (𝐺‘𝐵) | ||
| Theorem | fveq12d 6833 | Equality deduction for function value. (Contributed by FL, 22-Dec-2008.) |
| ⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐴) = (𝐺‘𝐵)) | ||
| Theorem | fveqeq2d 6834 | Equality deduction for function value. (Contributed by BJ, 30-Aug-2022.) |
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) | ||
| Theorem | fveqeq2 6835 | Equality deduction for function value. (Contributed by BJ, 31-Aug-2022.) |
| ⊢ (𝐴 = 𝐵 → ((𝐹‘𝐴) = 𝐶 ↔ (𝐹‘𝐵) = 𝐶)) | ||
| Theorem | nffv 6836 | Bound-variable hypothesis builder for function value. (Contributed by NM, 14-Nov-1995.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥(𝐹‘𝐴) | ||
| Theorem | nffvmpt1 6837* | Bound-variable hypothesis builder for mapping, special case. (Contributed by Mario Carneiro, 25-Dec-2016.) |
| ⊢ Ⅎ𝑥((𝑥 ∈ 𝐴 ↦ 𝐵)‘𝐶) | ||
| Theorem | nffvd 6838 | Deduction version of bound-variable hypothesis builder nffv 6836. (Contributed by NM, 10-Nov-2005.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| ⊢ (𝜑 → Ⅎ𝑥𝐹) & ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥(𝐹‘𝐴)) | ||
| Theorem | fvex 6839 | The value of a class exists. Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by NM, 30-Dec-1996.) |
| ⊢ (𝐹‘𝐴) ∈ V | ||
| Theorem | fvexi 6840 | The value of a class exists. Inference form of fvex 6839. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ 𝐴 = (𝐹‘𝐵) ⇒ ⊢ 𝐴 ∈ V | ||
| Theorem | fvexd 6841 | The value of a class exists (as consequent of anything). (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → (𝐹‘𝐴) ∈ V) | ||
| Theorem | fvif 6842 | Move a conditional outside of a function. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐹‘if(𝜑, 𝐴, 𝐵)) = if(𝜑, (𝐹‘𝐴), (𝐹‘𝐵)) | ||
| Theorem | iffv 6843 | Move a conditional outside of a function. (Contributed by Thierry Arnoux, 28-Sep-2018.) |
| ⊢ (if(𝜑, 𝐹, 𝐺)‘𝐴) = if(𝜑, (𝐹‘𝐴), (𝐺‘𝐴)) | ||
| Theorem | fv3 6844* | Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐹‘𝐴) = {𝑥 ∣ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝐴𝐹𝑦) ∧ ∃!𝑦 𝐴𝐹𝑦)} | ||
| Theorem | fvres 6845 | The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
| ⊢ (𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | ||
| Theorem | fvresd 6846 | The value of a restricted function, deduction version of fvres 6845. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐹 ↾ 𝐵)‘𝐴) = (𝐹‘𝐴)) | ||
| Theorem | funssfv 6847 | The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.) |
| ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) | ||
| Theorem | tz6.12c 6848* | Corollary of Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by SN, 23-Dec-2024.) |
| ⊢ (∃!𝑦 𝐴𝐹𝑦 → ((𝐹‘𝐴) = 𝑦 ↔ 𝐴𝐹𝑦)) | ||
| Theorem | tz6.12-1 6849* | Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 30-Apr-2004.) (Proof shortened by SN, 23-Dec-2024.) |
| ⊢ ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (𝐹‘𝐴) = 𝑦) | ||
| Theorem | tz6.12 6850* | Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.) |
| ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) | ||
| Theorem | tz6.12f 6851* | Function value, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 30-Aug-1999.) |
| ⊢ Ⅎ𝑦𝐹 ⇒ ⊢ ((〈𝐴, 𝑦〉 ∈ 𝐹 ∧ ∃!𝑦〈𝐴, 𝑦〉 ∈ 𝐹) → (𝐹‘𝐴) = 𝑦) | ||
| Theorem | tz6.12i 6852 | Corollary of Theorem 6.12(2) of [TakeutiZaring] p. 27. (Contributed by Mario Carneiro, 17-Nov-2014.) |
| ⊢ (𝐵 ≠ ∅ → ((𝐹‘𝐴) = 𝐵 → 𝐴𝐹𝐵)) | ||
| Theorem | fvbr0 6853 | Two possibilities for the behavior of a function value. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝑋𝐹(𝐹‘𝑋) ∨ (𝐹‘𝑋) = ∅) | ||
| Theorem | fvrn0 6854 | A function value is a member of the range plus null. (Contributed by Scott Fenton, 8-Jun-2011.) (Revised by Stefan O'Rear, 3-Jan-2015.) |
| ⊢ (𝐹‘𝑋) ∈ (ran 𝐹 ∪ {∅}) | ||
| Theorem | fvn0fvelrn 6855 | If the value of a function is not null, the value is an element of the range of the function. (Contributed by Alexander van der Vekens, 22-Jul-2018.) (Proof shortened by SN, 13-Jan-2025.) |
| ⊢ ((𝐹‘𝑋) ≠ ∅ → (𝐹‘𝑋) ∈ ran 𝐹) | ||
| Theorem | elfvunirn 6856 | A function value is a subset of the union of the range. (An artifact of our function value definition, compare elfvdm 6861). (Contributed by Thierry Arnoux, 13-Nov-2016.) Remove functionhood antecedent. (Revised by SN, 10-Jan-2025.) |
| ⊢ (𝐵 ∈ (𝐹‘𝐴) → 𝐵 ∈ ∪ ran 𝐹) | ||
| Theorem | fvssunirn 6857 | The result of a function value is always a subset of the union of the range, even if it is invalid and thus empty. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof shortened by SN, 13-Jan-2025.) |
| ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 | ||
| Theorem | fvssunirnOLD 6858 | Obsolete version of fvssunirn 6857 as of 13-Jan-2025. (Contributed by Stefan O'Rear, 2-Nov-2014.) (Revised by Mario Carneiro, 31-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐹‘𝑋) ⊆ ∪ ran 𝐹 | ||
| Theorem | ndmfv 6859 | The value of a class outside its domain is the empty set. (An artifact of our function value definition.) (Contributed by NM, 24-Aug-1995.) |
| ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | ||
| Theorem | ndmfvrcl 6860 | Reverse closure law for function with the empty set not in its domain (if 𝑅 = 𝑆). (Contributed by NM, 26-Apr-1996.) The class containing the function value does not have to be the domain. (Revised by Zhi Wang, 10-Nov-2025.) |
| ⊢ dom 𝐹 = 𝑆 & ⊢ ¬ ∅ ∈ 𝑅 ⇒ ⊢ ((𝐹‘𝐴) ∈ 𝑅 → 𝐴 ∈ 𝑆) | ||
| Theorem | elfvdm 6861 | If a function value has a member, then the argument belongs to the domain. (An artifact of our function value definition.) (Contributed by NM, 12-Feb-2007.) (Proof shortened by BJ, 22-Oct-2022.) |
| ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ dom 𝐹) | ||
| Theorem | elfvex 6862 | If a function value has a member, then the argument is a set. (An artifact of our function value definition.) (Contributed by Mario Carneiro, 6-Nov-2015.) |
| ⊢ (𝐴 ∈ (𝐹‘𝐵) → 𝐵 ∈ V) | ||
| Theorem | elfvexd 6863 | If a function value has a member, then its argument is a set. Deduction form of elfvex 6862. (An artifact of our function value definition.) (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ (𝐵‘𝐶)) ⇒ ⊢ (𝜑 → 𝐶 ∈ V) | ||
| Theorem | eliman0 6864 | A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ (𝐹‘𝐴) = ∅) → (𝐹‘𝐴) ∈ (𝐹 “ 𝐵)) | ||
| Theorem | nfvres 6865 | The value of a non-member of a restriction is the empty set. (An artifact of our function value definition.) (Contributed by NM, 13-Nov-1995.) |
| ⊢ (¬ 𝐴 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝐴) = ∅) | ||
| Theorem | nfunsn 6866 | If the restriction of a class to a singleton is not a function, then its value is the empty set. (An artifact of our function value definition.) (Contributed by NM, 8-Aug-2010.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) | ||
| Theorem | fvfundmfvn0 6867 | If the "value of a class" at an argument is not the empty set, then the argument is in the domain of the class and the class restricted to the singleton formed on that argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) (Proof shortened by BJ, 13-Aug-2022.) |
| ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) | ||
| Theorem | 0fv 6868 | Function value of the empty set. (Contributed by Stefan O'Rear, 26-Nov-2014.) |
| ⊢ (∅‘𝐴) = ∅ | ||
| Theorem | fv2prc 6869 | A function value of a function value at a proper class is the empty set. (Contributed by AV, 8-Apr-2021.) |
| ⊢ (¬ 𝐴 ∈ V → ((𝐹‘𝐴)‘𝐵) = ∅) | ||
| Theorem | elfv2ex 6870 | If a function value of a function value has a member, then the first argument is a set. (Contributed by AV, 8-Apr-2021.) |
| ⊢ (𝐴 ∈ ((𝐹‘𝐵)‘𝐶) → 𝐵 ∈ V) | ||
| Theorem | fveqres 6871 | Equal values imply equal values in a restriction. (Contributed by NM, 13-Nov-1995.) |
| ⊢ ((𝐹‘𝐴) = (𝐺‘𝐴) → ((𝐹 ↾ 𝐵)‘𝐴) = ((𝐺 ↾ 𝐵)‘𝐴)) | ||
| Theorem | csbfv12 6872 | Move class substitution in and out of a function value. (Contributed by NM, 11-Nov-2005.) (Revised by NM, 20-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) | ||
| Theorem | csbfv2g 6873* | Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005.) |
| ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (𝐹‘⦋𝐴 / 𝑥⦌𝐵)) | ||
| Theorem | csbfv 6874* | Substitution for a function value. (Contributed by NM, 1-Jan-2006.) (Revised by NM, 20-Aug-2018.) |
| ⊢ ⦋𝐴 / 𝑥⦌(𝐹‘𝑥) = (𝐹‘𝐴) | ||
| Theorem | funbrfv 6875 | The second argument of a binary relation on a function is the function's value. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 → (𝐹‘𝐴) = 𝐵)) | ||
| Theorem | funopfv 6876 | The second element in an ordered pair member of a function is the function's value. (Contributed by NM, 19-Jul-1996.) |
| ⊢ (Fun 𝐹 → (〈𝐴, 𝐵〉 ∈ 𝐹 → (𝐹‘𝐴) = 𝐵)) | ||
| Theorem | fnbrfvb 6877 | Equivalence of function value and binary relation. (Contributed by NM, 19-Apr-2004.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 𝐵𝐹𝐶)) | ||
| Theorem | fnopfvb 6878 | Equivalence of function value and ordered pair membership. (Contributed by NM, 7-Nov-1995.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ 𝐴) → ((𝐹‘𝐵) = 𝐶 ↔ 〈𝐵, 𝐶〉 ∈ 𝐹)) | ||
| Theorem | fvelima2 6879* | Function value in an image. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ (𝐹 “ 𝐶)) → ∃𝑥 ∈ (𝐴 ∩ 𝐶)(𝐹‘𝑥) = 𝐵) | ||
| Theorem | funbrfvb 6880 | Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) = 𝐵 ↔ 𝐴𝐹𝐵)) | ||
| Theorem | funopfvb 6881 | Equivalence of function value and ordered pair membership. Theorem 4.3(ii) of [Monk1] p. 42. (Contributed by NM, 26-Jan-1997.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ dom 𝐹) → ((𝐹‘𝐴) = 𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝐹)) | ||
| Theorem | fnbrfvb2 6882 | Version of fnbrfvb 6877 for functions on Cartesian products: function value expressed as a binary relation. See fnbrovb 7404 for the form when 𝐹 is seen as a binary operation. (Contributed by BJ, 15-Feb-2022.) |
| ⊢ ((𝐹 Fn (𝑉 × 𝑊) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊)) → ((𝐹‘〈𝐴, 𝐵〉) = 𝐶 ↔ 〈𝐴, 𝐵〉𝐹𝐶)) | ||
| Theorem | fdmeu 6883* | There is exactly one codomain element for each element of the domain of a function. (Contributed by AV, 20-Apr-2025.) |
| ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ∈ 𝐴) → ∃!𝑦 ∈ 𝐵 (𝐹‘𝑋) = 𝑦) | ||
| Theorem | funbrfv2b 6884 | Function value in terms of a binary relation. (Contributed by Mario Carneiro, 19-Mar-2014.) |
| ⊢ (Fun 𝐹 → (𝐴𝐹𝐵 ↔ (𝐴 ∈ dom 𝐹 ∧ (𝐹‘𝐴) = 𝐵))) | ||
| Theorem | dffn5 6885* | Representation of a function in terms of its values. (Contributed by FL, 14-Sep-2013.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | ||
| Theorem | fnrnfv 6886* | The range of a function expressed as a collection of the function's values. (Contributed by NM, 20-Oct-2005.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ (𝐹 Fn 𝐴 → ran 𝐹 = {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥)}) | ||
| Theorem | fvelrnb 6887* | A member of a function's range is a value of the function. (Contributed by NM, 31-Oct-1995.) |
| ⊢ (𝐹 Fn 𝐴 → (𝐵 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝐵)) | ||
| Theorem | foelcdmi 6888* | A member of a surjective function's codomain is a value of the function. (Contributed by Thierry Arnoux, 23-Jan-2020.) |
| ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑌 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑌) | ||
| Theorem | dfimafn 6889* | Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = {𝑦 ∣ ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦}) | ||
| Theorem | dfimafn2 6890* | Alternate definition of the image of a function as an indexed union of singletons of function values. (Contributed by Raph Levien, 20-Nov-2006.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → (𝐹 “ 𝐴) = ∪ 𝑥 ∈ 𝐴 {(𝐹‘𝑥)}) | ||
| Theorem | funimass4 6891* | Membership relation for the values of a function whose image is a subclass. (Contributed by Raph Levien, 20-Nov-2006.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ⊆ dom 𝐹) → ((𝐹 “ 𝐴) ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) | ||
| Theorem | fvelima 6892* | Function value in an image. Part of Theorem 4.4(iii) of [Monk1] p. 42. (Contributed by NM, 29-Apr-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| ⊢ ((Fun 𝐹 ∧ 𝐴 ∈ (𝐹 “ 𝐵)) → ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐴) | ||
| Theorem | funimassd 6893* | Sufficient condition for the image of a function being a subclass. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → Fun 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹 “ 𝐴) ⊆ 𝐵) | ||
| Theorem | fvelimad 6894* | Function value in an image. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐶 ∈ (𝐹 “ 𝐵)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴 ∩ 𝐵)(𝐹‘𝑥) = 𝐶) | ||
| Theorem | feqmptd 6895* | Deduction form of dffn5 6885. (Contributed by Mario Carneiro, 8-Jan-2015.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | ||
| Theorem | feqresmpt 6896* | Express a restricted function as a mapping. (Contributed by Mario Carneiro, 18-May-2016.) |
| ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐶) = (𝑥 ∈ 𝐶 ↦ (𝐹‘𝑥))) | ||
| Theorem | feqmptdf 6897 | Deduction form of dffn5f 6898. (Contributed by Mario Carneiro, 8-Jan-2015.) (Revised by Thierry Arnoux, 10-May-2017.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐹 & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | ||
| Theorem | dffn5f 6898* | Representation of a function in terms of its values. (Contributed by Mario Carneiro, 3-Jul-2015.) |
| ⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 = (𝑥 ∈ 𝐴 ↦ (𝐹‘𝑥))) | ||
| Theorem | fvelimab 6899* | Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ⊆ 𝐴) → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) | ||
| Theorem | fvelimabd 6900* | Deduction form of fvelimab 6899. (Contributed by Stanislas Polu, 9-Mar-2020.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 “ 𝐵) ↔ ∃𝑥 ∈ 𝐵 (𝐹‘𝑥) = 𝐶)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |