Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version |
Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6688 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6601 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 6428 –onto→wfo 6431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-f 6437 df-fo 6439 |
This theorem is referenced by: fodmrnu 6696 foun 6734 fo00 6752 foelrni 6831 cbvfo 7161 foeqcnvco 7172 canth 7229 br1steqg 7853 br2ndeqg 7854 1stcof 7861 2ndcof 7862 df1st2 7938 df2nd2 7939 1stconst 7940 2ndconst 7941 fsplit 7957 fsplitOLD 7958 smoiso2 8200 fodomfi 9092 brwdom2 9332 fodomfi2 9816 fpwwe 10402 imasaddfnlem 17239 imasvscafn 17248 imasleval 17252 dmaf 17764 cdaf 17765 imasmnd2 18422 imasgrp2 18690 efgrelexlemb 19356 efgredeu 19358 imasring 19858 znf1o 20759 zzngim 20760 indlcim 21047 1stcfb 22596 upxp 22774 uptx 22776 cnmpt1st 22819 cnmpt2nd 22820 qtoptopon 22855 qtopcld 22864 qtopeu 22867 qtoprest 22868 imastopn 22871 qtophmeo 22968 elfm3 23101 uniiccdif 24742 dirith 26677 grporn 28883 0vfval 28968 foresf1o 30850 2ndimaxp 30984 2ndresdju 30986 xppreima2 30988 1stpreimas 31038 1stpreima 31039 2ndpreima 31040 fsuppcurry1 31060 fsuppcurry2 31061 ffsrn 31064 gsummpt2d 31309 qusker 31549 imaslmod 31553 qtopt1 31785 qtophaus 31786 circcn 31788 cnre2csqima 31861 sigapildsys 32130 carsgclctunlem3 32287 nosupno 33906 nosupbday 33908 noinfno 33921 noinfbday 33923 noetasuplem4 33939 noetainflem4 33943 bdayfn 33968 fnbigcup 34203 filnetlem4 34570 ovoliunnfl 35819 voliunnfl 35821 volsupnfl 35822 ssnnf1octb 42733 nnfoctbdj 43994 fcoreslem4 44560 fcoresf1 44563 fargshiftfo 44894 |
Copyright terms: Public domain | W3C validator |