| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6775 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6692 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6509 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-f 6518 df-fo 6520 |
| This theorem is referenced by: fodmrnu 6783 foun 6821 fo00 6839 foelcdmi 6925 cbvfo 7267 foeqcnvco 7278 canth 7344 br1steqg 7993 br2ndeqg 7994 1stcof 8001 2ndcof 8002 df1st2 8080 df2nd2 8081 1stconst 8082 2ndconst 8083 fsplit 8099 smoiso2 8341 fodomfi 9268 fodomfiOLD 9288 brwdom2 9533 fodomfi2 10020 fpwwe 10606 imasaddfnlem 17498 imasvscafn 17507 imasleval 17511 dmaf 18018 cdaf 18019 imasmnd2 18708 imasgrp2 18994 efgrelexlemb 19687 efgredeu 19689 imasrng 20093 imasring 20246 znf1o 21468 zzngim 21469 indlcim 21756 1stcfb 23339 upxp 23517 uptx 23519 cnmpt1st 23562 cnmpt2nd 23563 qtoptopon 23598 qtopcld 23607 qtopeu 23610 qtoprest 23611 imastopn 23614 qtophmeo 23711 elfm3 23844 uniiccdif 25486 dirith 27447 nosupno 27622 nosupbday 27624 noinfno 27637 noinfbday 27639 noetasuplem4 27655 noetainflem4 27659 bdayfn 27692 grporn 30457 0vfval 30542 foresf1o 32440 2ndimaxp 32577 2ndresdju 32580 xppreima2 32582 1stpreimas 32636 1stpreima 32637 2ndpreima 32638 fsuppcurry1 32655 fsuppcurry2 32656 ffsrn 32659 gsummpt2d 32996 qusker 33327 imaslmod 33331 qtopt1 33832 qtophaus 33833 circcn 33835 cnre2csqima 33908 sigapildsys 34159 carsgclctunlem3 34318 fnbigcup 35896 filnetlem4 36376 ovoliunnfl 37663 voliunnfl 37665 volsupnfl 37666 ssnnf1octb 45195 nnfoctbdj 46461 fcoreslem4 47071 fcoresf1 47074 fargshiftfo 47447 fonex 48859 |
| Copyright terms: Public domain | W3C validator |