| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6772 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6689 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6506 –onto→wfo 6509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-f 6515 df-fo 6517 |
| This theorem is referenced by: fodmrnu 6780 foun 6818 fo00 6836 foelcdmi 6922 cbvfo 7264 foeqcnvco 7275 canth 7341 br1steqg 7990 br2ndeqg 7991 1stcof 7998 2ndcof 7999 df1st2 8077 df2nd2 8078 1stconst 8079 2ndconst 8080 fsplit 8096 smoiso2 8338 fodomfi 9261 fodomfiOLD 9281 brwdom2 9526 fodomfi2 10013 fpwwe 10599 imasaddfnlem 17491 imasvscafn 17500 imasleval 17504 dmaf 18011 cdaf 18012 imasmnd2 18701 imasgrp2 18987 efgrelexlemb 19680 efgredeu 19682 imasrng 20086 imasring 20239 znf1o 21461 zzngim 21462 indlcim 21749 1stcfb 23332 upxp 23510 uptx 23512 cnmpt1st 23555 cnmpt2nd 23556 qtoptopon 23591 qtopcld 23600 qtopeu 23603 qtoprest 23604 imastopn 23607 qtophmeo 23704 elfm3 23837 uniiccdif 25479 dirith 27440 nosupno 27615 nosupbday 27617 noinfno 27630 noinfbday 27632 noetasuplem4 27648 noetainflem4 27652 bdayfn 27685 grporn 30450 0vfval 30535 foresf1o 32433 2ndimaxp 32570 2ndresdju 32573 xppreima2 32575 1stpreimas 32629 1stpreima 32630 2ndpreima 32631 fsuppcurry1 32648 fsuppcurry2 32649 ffsrn 32652 gsummpt2d 32989 qusker 33320 imaslmod 33324 qtopt1 33825 qtophaus 33826 circcn 33828 cnre2csqima 33901 sigapildsys 34152 carsgclctunlem3 34311 fnbigcup 35889 filnetlem4 36369 ovoliunnfl 37656 voliunnfl 37658 volsupnfl 37659 ssnnf1octb 45188 nnfoctbdj 46454 fcoreslem4 47067 fcoresf1 47070 fargshiftfo 47443 fonex 48855 |
| Copyright terms: Public domain | W3C validator |