| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6730 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6647 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6471 –onto→wfo 6474 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 df-f 6480 df-fo 6482 |
| This theorem is referenced by: fodmrnu 6738 foun 6776 fo00 6794 foelcdmi 6878 cbvfo 7218 foeqcnvco 7229 canth 7295 br1steqg 7938 br2ndeqg 7939 1stcof 7946 2ndcof 7947 df1st2 8023 df2nd2 8024 1stconst 8025 2ndconst 8026 fsplit 8042 smoiso2 8284 fodomfi 9191 fodomfiOLD 9209 brwdom2 9454 fodomfi2 9946 fpwwe 10532 imasaddfnlem 17427 imasvscafn 17436 imasleval 17440 dmaf 17951 cdaf 17952 imasmnd2 18677 imasgrp2 18963 efgrelexlemb 19657 efgredeu 19659 imasrng 20090 imasring 20243 znf1o 21483 zzngim 21484 indlcim 21772 1stcfb 23355 upxp 23533 uptx 23535 cnmpt1st 23578 cnmpt2nd 23579 qtoptopon 23614 qtopcld 23623 qtopeu 23626 qtoprest 23627 imastopn 23630 qtophmeo 23727 elfm3 23860 uniiccdif 25501 dirith 27462 nosupno 27637 nosupbday 27639 noinfno 27652 noinfbday 27654 noetasuplem4 27670 noetainflem4 27674 bdayfn 27707 grporn 30493 0vfval 30578 foresf1o 32476 2ndimaxp 32620 2ndresdju 32623 xppreima2 32625 1stpreimas 32679 1stpreima 32680 2ndpreima 32681 fsuppcurry1 32699 fsuppcurry2 32700 ffsrn 32703 gsummpt2d 33021 qusker 33306 imaslmod 33310 qtopt1 33840 qtophaus 33841 circcn 33843 cnre2csqima 33916 sigapildsys 34167 carsgclctunlem3 34325 fnbigcup 35935 filnetlem4 36415 ovoliunnfl 37702 voliunnfl 37704 volsupnfl 37705 ssnnf1octb 45231 nnfoctbdj 46494 fcoreslem4 47097 fcoresf1 47100 fargshiftfo 47473 fonex 48898 |
| Copyright terms: Public domain | W3C validator |