| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6789 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6706 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6525 –onto→wfo 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-f 6534 df-fo 6536 |
| This theorem is referenced by: fodmrnu 6797 foun 6835 fo00 6853 foelcdmi 6939 cbvfo 7281 foeqcnvco 7292 canth 7357 br1steqg 8008 br2ndeqg 8009 1stcof 8016 2ndcof 8017 df1st2 8095 df2nd2 8096 1stconst 8097 2ndconst 8098 fsplit 8114 smoiso2 8381 fodomfi 9320 fodomfiOLD 9340 brwdom2 9585 fodomfi2 10072 fpwwe 10658 imasaddfnlem 17540 imasvscafn 17549 imasleval 17553 dmaf 18060 cdaf 18061 imasmnd2 18750 imasgrp2 19036 efgrelexlemb 19729 efgredeu 19731 imasrng 20135 imasring 20288 znf1o 21510 zzngim 21511 indlcim 21798 1stcfb 23381 upxp 23559 uptx 23561 cnmpt1st 23604 cnmpt2nd 23605 qtoptopon 23640 qtopcld 23649 qtopeu 23652 qtoprest 23653 imastopn 23656 qtophmeo 23753 elfm3 23886 uniiccdif 25529 dirith 27490 nosupno 27665 nosupbday 27667 noinfno 27680 noinfbday 27682 noetasuplem4 27698 noetainflem4 27702 bdayfn 27735 grporn 30448 0vfval 30533 foresf1o 32431 2ndimaxp 32570 2ndresdju 32573 xppreima2 32575 1stpreimas 32629 1stpreima 32630 2ndpreima 32631 fsuppcurry1 32648 fsuppcurry2 32649 ffsrn 32652 gsummpt2d 32989 qusker 33310 imaslmod 33314 qtopt1 33812 qtophaus 33813 circcn 33815 cnre2csqima 33888 sigapildsys 34139 carsgclctunlem3 34298 fnbigcup 35865 filnetlem4 36345 ovoliunnfl 37632 voliunnfl 37634 volsupnfl 37635 ssnnf1octb 45166 nnfoctbdj 46433 fcoreslem4 47043 fcoresf1 47046 fargshiftfo 47404 fonex 48790 |
| Copyright terms: Public domain | W3C validator |