Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version |
Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6672 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6585 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 6413 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-f 6422 df-fo 6424 |
This theorem is referenced by: fodmrnu 6680 foun 6718 fo00 6735 foelrni 6813 cbvfo 7141 foeqcnvco 7152 canth 7209 br1steqg 7826 br2ndeqg 7827 1stcof 7834 2ndcof 7835 df1st2 7909 df2nd2 7910 1stconst 7911 2ndconst 7912 fsplit 7928 fsplitOLD 7929 smoiso2 8171 fodomfi 9022 brwdom2 9262 fodomfi2 9747 fpwwe 10333 imasaddfnlem 17156 imasvscafn 17165 imasleval 17169 dmaf 17680 cdaf 17681 imasmnd2 18337 imasgrp2 18605 efgrelexlemb 19271 efgredeu 19273 imasring 19773 znf1o 20671 zzngim 20672 indlcim 20957 1stcfb 22504 upxp 22682 uptx 22684 cnmpt1st 22727 cnmpt2nd 22728 qtoptopon 22763 qtopcld 22772 qtopeu 22775 qtoprest 22776 imastopn 22779 qtophmeo 22876 elfm3 23009 uniiccdif 24647 dirith 26582 grporn 28784 0vfval 28869 foresf1o 30751 2ndimaxp 30885 2ndresdju 30887 xppreima2 30889 1stpreimas 30940 1stpreima 30941 2ndpreima 30942 fsuppcurry1 30962 fsuppcurry2 30963 ffsrn 30966 gsummpt2d 31211 qusker 31451 imaslmod 31455 qtopt1 31687 qtophaus 31688 circcn 31690 cnre2csqima 31763 sigapildsys 32030 carsgclctunlem3 32187 nosupno 33833 nosupbday 33835 noinfno 33848 noinfbday 33850 noetasuplem4 33866 noetainflem4 33870 bdayfn 33895 fnbigcup 34130 filnetlem4 34497 ovoliunnfl 35746 voliunnfl 35748 volsupnfl 35749 ssnnf1octb 42622 nnfoctbdj 43884 fcoreslem4 44447 fcoresf1 44450 fargshiftfo 44782 |
Copyright terms: Public domain | W3C validator |