| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6740 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6657 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6481 –onto→wfo 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3922 df-f 6490 df-fo 6492 |
| This theorem is referenced by: fodmrnu 6748 foun 6786 fo00 6804 foelcdmi 6888 cbvfo 7230 foeqcnvco 7241 canth 7307 br1steqg 7953 br2ndeqg 7954 1stcof 7961 2ndcof 7962 df1st2 8038 df2nd2 8039 1stconst 8040 2ndconst 8041 fsplit 8057 smoiso2 8299 fodomfi 9219 fodomfiOLD 9239 brwdom2 9484 fodomfi2 9973 fpwwe 10559 imasaddfnlem 17450 imasvscafn 17459 imasleval 17463 dmaf 17974 cdaf 17975 imasmnd2 18666 imasgrp2 18952 efgrelexlemb 19647 efgredeu 19649 imasrng 20080 imasring 20233 znf1o 21476 zzngim 21477 indlcim 21765 1stcfb 23348 upxp 23526 uptx 23528 cnmpt1st 23571 cnmpt2nd 23572 qtoptopon 23607 qtopcld 23616 qtopeu 23619 qtoprest 23620 imastopn 23623 qtophmeo 23720 elfm3 23853 uniiccdif 25495 dirith 27456 nosupno 27631 nosupbday 27633 noinfno 27646 noinfbday 27648 noetasuplem4 27664 noetainflem4 27668 bdayfn 27701 grporn 30483 0vfval 30568 foresf1o 32466 2ndimaxp 32603 2ndresdju 32606 xppreima2 32608 1stpreimas 32662 1stpreima 32663 2ndpreima 32664 fsuppcurry1 32681 fsuppcurry2 32682 ffsrn 32685 gsummpt2d 33015 qusker 33299 imaslmod 33303 qtopt1 33804 qtophaus 33805 circcn 33807 cnre2csqima 33880 sigapildsys 34131 carsgclctunlem3 34290 fnbigcup 35877 filnetlem4 36357 ovoliunnfl 37644 voliunnfl 37646 volsupnfl 37647 ssnnf1octb 45175 nnfoctbdj 46441 fcoreslem4 47054 fcoresf1 47057 fargshiftfo 47430 fonex 48855 |
| Copyright terms: Public domain | W3C validator |