![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version |
Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
Ref | Expression |
---|---|
fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fof 6834 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
2 | 1 | ffnd 6748 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Fn wfn 6568 –onto→wfo 6571 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-f 6577 df-fo 6579 |
This theorem is referenced by: fodmrnu 6842 foun 6880 fo00 6898 foelcdmi 6983 cbvfo 7325 foeqcnvco 7336 canth 7401 br1steqg 8052 br2ndeqg 8053 1stcof 8060 2ndcof 8061 df1st2 8139 df2nd2 8140 1stconst 8141 2ndconst 8142 fsplit 8158 smoiso2 8425 fodomfi 9378 fodomfiOLD 9398 brwdom2 9642 fodomfi2 10129 fpwwe 10715 imasaddfnlem 17588 imasvscafn 17597 imasleval 17601 dmaf 18116 cdaf 18117 imasmnd2 18809 imasgrp2 19095 efgrelexlemb 19792 efgredeu 19794 imasrng 20204 imasring 20353 znf1o 21593 zzngim 21594 indlcim 21883 1stcfb 23474 upxp 23652 uptx 23654 cnmpt1st 23697 cnmpt2nd 23698 qtoptopon 23733 qtopcld 23742 qtopeu 23745 qtoprest 23746 imastopn 23749 qtophmeo 23846 elfm3 23979 uniiccdif 25632 dirith 27591 nosupno 27766 nosupbday 27768 noinfno 27781 noinfbday 27783 noetasuplem4 27799 noetainflem4 27803 bdayfn 27836 grporn 30553 0vfval 30638 foresf1o 32532 2ndimaxp 32665 2ndresdju 32667 xppreima2 32669 1stpreimas 32717 1stpreima 32718 2ndpreima 32719 fsuppcurry1 32739 fsuppcurry2 32740 ffsrn 32743 gsummpt2d 33032 qusker 33342 imaslmod 33346 qtopt1 33781 qtophaus 33782 circcn 33784 cnre2csqima 33857 sigapildsys 34126 carsgclctunlem3 34285 fnbigcup 35865 filnetlem4 36347 ovoliunnfl 37622 voliunnfl 37624 volsupnfl 37625 ssnnf1octb 45101 nnfoctbdj 46377 fcoreslem4 46981 fcoresf1 46984 fargshiftfo 47316 |
Copyright terms: Public domain | W3C validator |