| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6754 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6671 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6494 –onto→wfo 6497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 df-f 6503 df-fo 6505 |
| This theorem is referenced by: fodmrnu 6762 foun 6800 fo00 6818 foelcdmi 6904 cbvfo 7246 foeqcnvco 7257 canth 7323 br1steqg 7969 br2ndeqg 7970 1stcof 7977 2ndcof 7978 df1st2 8054 df2nd2 8055 1stconst 8056 2ndconst 8057 fsplit 8073 smoiso2 8315 fodomfi 9237 fodomfiOLD 9257 brwdom2 9502 fodomfi2 9989 fpwwe 10575 imasaddfnlem 17467 imasvscafn 17476 imasleval 17480 dmaf 17987 cdaf 17988 imasmnd2 18677 imasgrp2 18963 efgrelexlemb 19656 efgredeu 19658 imasrng 20062 imasring 20215 znf1o 21437 zzngim 21438 indlcim 21725 1stcfb 23308 upxp 23486 uptx 23488 cnmpt1st 23531 cnmpt2nd 23532 qtoptopon 23567 qtopcld 23576 qtopeu 23579 qtoprest 23580 imastopn 23583 qtophmeo 23680 elfm3 23813 uniiccdif 25455 dirith 27416 nosupno 27591 nosupbday 27593 noinfno 27606 noinfbday 27608 noetasuplem4 27624 noetainflem4 27628 bdayfn 27661 grporn 30423 0vfval 30508 foresf1o 32406 2ndimaxp 32543 2ndresdju 32546 xppreima2 32548 1stpreimas 32602 1stpreima 32603 2ndpreima 32604 fsuppcurry1 32621 fsuppcurry2 32622 ffsrn 32625 gsummpt2d 32962 qusker 33293 imaslmod 33297 qtopt1 33798 qtophaus 33799 circcn 33801 cnre2csqima 33874 sigapildsys 34125 carsgclctunlem3 34284 fnbigcup 35862 filnetlem4 36342 ovoliunnfl 37629 voliunnfl 37631 volsupnfl 37632 ssnnf1octb 45161 nnfoctbdj 46427 fcoreslem4 47040 fcoresf1 47043 fargshiftfo 47416 fonex 48828 |
| Copyright terms: Public domain | W3C validator |