| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fofn | Structured version Visualization version GIF version | ||
| Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.) |
| Ref | Expression |
|---|---|
| fofn | ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof 6743 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | ffnd 6660 | 1 ⊢ (𝐹:𝐴–onto→𝐵 → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Fn wfn 6484 –onto→wfo 6487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-f 6493 df-fo 6495 |
| This theorem is referenced by: fodmrnu 6751 foun 6789 fo00 6807 foelcdmi 6892 cbvfo 7232 foeqcnvco 7243 canth 7309 br1steqg 7952 br2ndeqg 7953 1stcof 7960 2ndcof 7961 df1st2 8037 df2nd2 8038 1stconst 8039 2ndconst 8040 fsplit 8056 smoiso2 8298 fodomfi 9207 fodomfiOLD 9225 brwdom2 9470 fodomfi2 9962 fpwwe 10548 imasaddfnlem 17440 imasvscafn 17449 imasleval 17453 dmaf 17964 cdaf 17965 imasmnd2 18690 imasgrp2 18976 efgrelexlemb 19670 efgredeu 19672 imasrng 20103 imasring 20257 znf1o 21497 zzngim 21498 indlcim 21786 1stcfb 23380 upxp 23558 uptx 23560 cnmpt1st 23603 cnmpt2nd 23604 qtoptopon 23639 qtopcld 23648 qtopeu 23651 qtoprest 23652 imastopn 23655 qtophmeo 23752 elfm3 23885 uniiccdif 25526 dirith 27487 nosupno 27662 nosupbday 27664 noinfno 27677 noinfbday 27679 noetasuplem4 27695 noetainflem4 27699 bdayfn 27732 grporn 30522 0vfval 30607 foresf1o 32505 2ndimaxp 32650 2ndresdju 32653 xppreima2 32655 1stpreimas 32711 1stpreima 32712 2ndpreima 32713 fsuppcurry1 32731 fsuppcurry2 32732 ffsrn 32735 gsummpt2d 33060 qusker 33358 imaslmod 33362 qtopt1 33920 qtophaus 33921 circcn 33923 cnre2csqima 33996 sigapildsys 34247 carsgclctunlem3 34405 fnbigcup 36015 filnetlem4 36497 ovoliunnfl 37775 voliunnfl 37777 volsupnfl 37778 ssnnf1octb 45354 nnfoctbdj 46616 fcoreslem4 47228 fcoresf1 47231 fargshiftfo 47604 fonex 49028 |
| Copyright terms: Public domain | W3C validator |