| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version | ||
| Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6549 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 2 | dffn4 6781 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 dom cdm 5641 ran crn 5642 Fun wfun 6508 Fn wfn 6509 –onto→wfo 6512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fn 6517 df-fo 6520 |
| This theorem is referenced by: fimacnvinrn 7046 imacosupp 8191 ordtypelem8 9485 wdomima2g 9546 imadomg 10494 gruima 10762 oppglsm 19579 1stcrestlem 23346 dfac14 23512 qtoptop2 23593 fsupprnfi 32622 imadomfi 41997 rn1st 45274 |
| Copyright terms: Public domain | W3C validator |