![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version |
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
funforn | β’ (Fun π΄ β π΄:dom π΄βontoβran π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6579 | . 2 β’ (Fun π΄ β π΄ Fn dom π΄) | |
2 | dffn4 6812 | . 2 β’ (π΄ Fn dom π΄ β π΄:dom π΄βontoβran π΄) | |
3 | 1, 2 | bitri 275 | 1 β’ (Fun π΄ β π΄:dom π΄βontoβran π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 dom cdm 5677 ran crn 5678 Fun wfun 6538 Fn wfn 6539 βontoβwfo 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-fn 6547 df-fo 6550 |
This theorem is referenced by: fimacnvinrn 7074 imacosupp 8194 ordtypelem8 9520 wdomima2g 9581 imadomg 10529 gruima 10797 oppglsm 19510 1stcrestlem 22956 dfac14 23122 qtoptop2 23203 fsupprnfi 31914 rn1st 43978 |
Copyright terms: Public domain | W3C validator |