MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6813
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴 ↔ 𝐴:dom 𝐴–ontoβ†’ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6579 . 2 (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴)
2 dffn4 6812 . 2 (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–ontoβ†’ran 𝐴)
31, 2bitri 275 1 (Fun 𝐴 ↔ 𝐴:dom 𝐴–ontoβ†’ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205  dom cdm 5677  ran crn 5678  Fun wfun 6538   Fn wfn 6539  β€“ontoβ†’wfo 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-cleq 2725  df-fn 6547  df-fo 6550
This theorem is referenced by:  fimacnvinrn  7074  imacosupp  8194  ordtypelem8  9520  wdomima2g  9581  imadomg  10529  gruima  10797  oppglsm  19510  1stcrestlem  22956  dfac14  23122  qtoptop2  23203  fsupprnfi  31914  rn1st  43978
  Copyright terms: Public domain W3C validator