MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6841
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6608 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6840 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 275 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  dom cdm 5700  ran crn 5701  Fun wfun 6567   Fn wfn 6568  ontowfo 6571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-fn 6576  df-fo 6579
This theorem is referenced by:  fimacnvinrn  7105  imacosupp  8250  ordtypelem8  9594  wdomima2g  9655  imadomg  10603  gruima  10871  oppglsm  19684  1stcrestlem  23481  dfac14  23647  qtoptop2  23728  fsupprnfi  32704  imadomfi  41959  rn1st  45183
  Copyright terms: Public domain W3C validator