MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6797
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6566 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6796 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 275 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  dom cdm 5654  ran crn 5655  Fun wfun 6525   Fn wfn 6526  ontowfo 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-fn 6534  df-fo 6537
This theorem is referenced by:  fimacnvinrn  7061  imacosupp  8208  ordtypelem8  9539  wdomima2g  9600  imadomg  10548  gruima  10816  oppglsm  19623  1stcrestlem  23390  dfac14  23556  qtoptop2  23637  fsupprnfi  32669  imadomfi  42015  rn1st  45297
  Copyright terms: Public domain W3C validator