![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version |
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
funforn | β’ (Fun π΄ β π΄:dom π΄βontoβran π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6577 | . 2 β’ (Fun π΄ β π΄ Fn dom π΄) | |
2 | dffn4 6810 | . 2 β’ (π΄ Fn dom π΄ β π΄:dom π΄βontoβran π΄) | |
3 | 1, 2 | bitri 274 | 1 β’ (Fun π΄ β π΄:dom π΄βontoβran π΄) |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 dom cdm 5675 ran crn 5676 Fun wfun 6536 Fn wfn 6537 βontoβwfo 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-fn 6545 df-fo 6548 |
This theorem is referenced by: fimacnvinrn 7072 imacosupp 8196 ordtypelem8 9522 wdomima2g 9583 imadomg 10531 gruima 10799 oppglsm 19551 1stcrestlem 23176 dfac14 23342 qtoptop2 23423 fsupprnfi 32181 rn1st 44276 |
Copyright terms: Public domain | W3C validator |