MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6828
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6598 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6827 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 275 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  dom cdm 5689  ran crn 5690  Fun wfun 6557   Fn wfn 6558  ontowfo 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-cleq 2727  df-fn 6566  df-fo 6569
This theorem is referenced by:  fimacnvinrn  7091  imacosupp  8233  ordtypelem8  9563  wdomima2g  9624  imadomg  10572  gruima  10840  oppglsm  19675  1stcrestlem  23476  dfac14  23642  qtoptop2  23723  fsupprnfi  32707  imadomfi  41984  rn1st  45219
  Copyright terms: Public domain W3C validator