MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6811
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴 ↔ 𝐴:dom 𝐴–ontoβ†’ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6577 . 2 (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴)
2 dffn4 6810 . 2 (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–ontoβ†’ran 𝐴)
31, 2bitri 274 1 (Fun 𝐴 ↔ 𝐴:dom 𝐴–ontoβ†’ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205  dom cdm 5675  ran crn 5676  Fun wfun 6536   Fn wfn 6537  β€“ontoβ†’wfo 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-cleq 2722  df-fn 6545  df-fo 6548
This theorem is referenced by:  fimacnvinrn  7072  imacosupp  8196  ordtypelem8  9522  wdomima2g  9583  imadomg  10531  gruima  10799  oppglsm  19551  1stcrestlem  23176  dfac14  23342  qtoptop2  23423  fsupprnfi  32181  rn1st  44276
  Copyright terms: Public domain W3C validator