MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6761
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6530 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6760 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 275 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  dom cdm 5631  ran crn 5632  Fun wfun 6493   Fn wfn 6494  ontowfo 6497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-fn 6502  df-fo 6505
This theorem is referenced by:  fimacnvinrn  7025  imacosupp  8165  ordtypelem8  9454  wdomima2g  9515  imadomg  10463  gruima  10731  oppglsm  19548  1stcrestlem  23315  dfac14  23481  qtoptop2  23562  fsupprnfi  32588  imadomfi  41963  rn1st  45240
  Copyright terms: Public domain W3C validator