MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6779
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6546 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6778 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 275 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  dom cdm 5638  ran crn 5639  Fun wfun 6505   Fn wfn 6506  ontowfo 6509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-fn 6514  df-fo 6517
This theorem is referenced by:  fimacnvinrn  7043  imacosupp  8188  ordtypelem8  9478  wdomima2g  9539  imadomg  10487  gruima  10755  oppglsm  19572  1stcrestlem  23339  dfac14  23505  qtoptop2  23586  fsupprnfi  32615  imadomfi  41990  rn1st  45267
  Copyright terms: Public domain W3C validator