![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version |
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6130 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
2 | dffn4 6336 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
3 | 1, 2 | bitri 267 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 dom cdm 5311 ran crn 5312 Fun wfun 6094 Fn wfn 6095 –onto→wfo 6098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-ext 2776 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-cleq 2791 df-fn 6103 df-fo 6106 |
This theorem is referenced by: fimacnvinrn 6573 imacosupp 7572 ordtypelem8 8671 wdomima2g 8732 imadomg 9643 gruima 9911 oppglsm 18367 1stcrestlem 21581 dfac14 21747 qtoptop2 21828 |
Copyright terms: Public domain | W3C validator |