MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6812
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6577 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6811 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 275 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  dom cdm 5672  ran crn 5673  Fun wfun 6536   Fn wfn 6537  ontowfo 6540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1775  df-cleq 2719  df-fn 6545  df-fo 6548
This theorem is referenced by:  fimacnvinrn  7075  imacosupp  8208  ordtypelem8  9540  wdomima2g  9601  imadomg  10549  gruima  10817  oppglsm  19588  1stcrestlem  23343  dfac14  23509  qtoptop2  23590  fsupprnfi  32456  imadomfi  41410  rn1st  44573
  Copyright terms: Public domain W3C validator