Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version |
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6448 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
2 | dffn4 6678 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 dom cdm 5580 ran crn 5581 Fun wfun 6412 Fn wfn 6413 –onto→wfo 6416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-fn 6421 df-fo 6424 |
This theorem is referenced by: fimacnvinrn 6931 imacosupp 7996 ordtypelem8 9214 wdomima2g 9275 imadomg 10221 gruima 10489 oppglsm 19162 1stcrestlem 22511 dfac14 22677 qtoptop2 22758 fsupprnfi 30928 |
Copyright terms: Public domain | W3C validator |