MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6742
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6511 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6741 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 275 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  dom cdm 5614  ran crn 5615  Fun wfun 6475   Fn wfn 6476  ontowfo 6479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-fn 6484  df-fo 6487
This theorem is referenced by:  fimacnvinrn  7004  imacosupp  8139  ordtypelem8  9411  wdomima2g  9472  imadomg  10425  gruima  10693  oppglsm  19554  1stcrestlem  23367  dfac14  23533  qtoptop2  23614  fsupprnfi  32673  imadomfi  42043  rn1st  45318
  Copyright terms: Public domain W3C validator