![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version |
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6577 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
2 | dffn4 6811 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 dom cdm 5672 ran crn 5673 Fun wfun 6536 Fn wfn 6537 –onto→wfo 6540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2719 df-fn 6545 df-fo 6548 |
This theorem is referenced by: fimacnvinrn 7075 imacosupp 8208 ordtypelem8 9540 wdomima2g 9601 imadomg 10549 gruima 10817 oppglsm 19588 1stcrestlem 23343 dfac14 23509 qtoptop2 23590 fsupprnfi 32456 imadomfi 41410 rn1st 44573 |
Copyright terms: Public domain | W3C validator |