MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6679
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6448 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6678 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 274 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  dom cdm 5580  ran crn 5581  Fun wfun 6412   Fn wfn 6413  ontowfo 6416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-fn 6421  df-fo 6424
This theorem is referenced by:  fimacnvinrn  6931  imacosupp  7996  ordtypelem8  9214  wdomima2g  9275  imadomg  10221  gruima  10489  oppglsm  19162  1stcrestlem  22511  dfac14  22677  qtoptop2  22758  fsupprnfi  30928
  Copyright terms: Public domain W3C validator