| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version | ||
| Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6530 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 2 | dffn4 6760 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 dom cdm 5631 ran crn 5632 Fun wfun 6493 Fn wfn 6494 –onto→wfo 6497 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6502 df-fo 6505 |
| This theorem is referenced by: fimacnvinrn 7025 imacosupp 8165 ordtypelem8 9454 wdomima2g 9515 imadomg 10463 gruima 10731 oppglsm 19548 1stcrestlem 23315 dfac14 23481 qtoptop2 23562 fsupprnfi 32588 imadomfi 41963 rn1st 45240 |
| Copyright terms: Public domain | W3C validator |