MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6695
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6464 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6694 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 274 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  dom cdm 5589  ran crn 5590  Fun wfun 6427   Fn wfn 6428  ontowfo 6431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-fn 6436  df-fo 6439
This theorem is referenced by:  fimacnvinrn  6949  imacosupp  8025  ordtypelem8  9284  wdomima2g  9345  imadomg  10290  gruima  10558  oppglsm  19247  1stcrestlem  22603  dfac14  22769  qtoptop2  22850  fsupprnfi  31026
  Copyright terms: Public domain W3C validator