| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version | ||
| Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6511 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 2 | dffn4 6741 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 dom cdm 5614 ran crn 5615 Fun wfun 6475 Fn wfn 6476 –onto→wfo 6479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fn 6484 df-fo 6487 |
| This theorem is referenced by: fimacnvinrn 7004 imacosupp 8139 ordtypelem8 9411 wdomima2g 9472 imadomg 10425 gruima 10693 oppglsm 19554 1stcrestlem 23367 dfac14 23533 qtoptop2 23614 fsupprnfi 32673 imadomfi 42043 rn1st 45318 |
| Copyright terms: Public domain | W3C validator |