| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version | ||
| Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
| Ref | Expression |
|---|---|
| funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funfn 6566 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
| 2 | dffn4 6796 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 dom cdm 5654 ran crn 5655 Fun wfun 6525 Fn wfn 6526 –onto→wfo 6529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-fn 6534 df-fo 6537 |
| This theorem is referenced by: fimacnvinrn 7061 imacosupp 8208 ordtypelem8 9539 wdomima2g 9600 imadomg 10548 gruima 10816 oppglsm 19623 1stcrestlem 23390 dfac14 23556 qtoptop2 23637 fsupprnfi 32669 imadomfi 42015 rn1st 45297 |
| Copyright terms: Public domain | W3C validator |