![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funforn | Structured version Visualization version GIF version |
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.) |
Ref | Expression |
---|---|
funforn | ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 6598 | . 2 ⊢ (Fun 𝐴 ↔ 𝐴 Fn dom 𝐴) | |
2 | dffn4 6827 | . 2 ⊢ (𝐴 Fn dom 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (Fun 𝐴 ↔ 𝐴:dom 𝐴–onto→ran 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 dom cdm 5689 ran crn 5690 Fun wfun 6557 Fn wfn 6558 –onto→wfo 6561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-fn 6566 df-fo 6569 |
This theorem is referenced by: fimacnvinrn 7091 imacosupp 8233 ordtypelem8 9563 wdomima2g 9624 imadomg 10572 gruima 10840 oppglsm 19675 1stcrestlem 23476 dfac14 23642 qtoptop2 23723 fsupprnfi 32707 imadomfi 41984 rn1st 45219 |
Copyright terms: Public domain | W3C validator |