MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funforn Structured version   Visualization version   GIF version

Theorem funforn 6743
Description: A function maps its domain onto its range. (Contributed by NM, 23-Jul-2004.)
Assertion
Ref Expression
funforn (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)

Proof of Theorem funforn
StepHypRef Expression
1 funfn 6512 . 2 (Fun 𝐴𝐴 Fn dom 𝐴)
2 dffn4 6742 . 2 (𝐴 Fn dom 𝐴𝐴:dom 𝐴onto→ran 𝐴)
31, 2bitri 275 1 (Fun 𝐴𝐴:dom 𝐴onto→ran 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  dom cdm 5619  ran crn 5620  Fun wfun 6476   Fn wfn 6477  ontowfo 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-fn 6485  df-fo 6488
This theorem is referenced by:  fimacnvinrn  7005  imacosupp  8142  ordtypelem8  9417  wdomima2g  9478  imadomg  10428  gruima  10696  oppglsm  19521  1stcrestlem  23337  dfac14  23503  qtoptop2  23584  fsupprnfi  32634  imadomfi  41975  rn1st  45251
  Copyright terms: Public domain W3C validator