MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothprimlem Structured version   Visualization version   GIF version

Theorem grothprimlem 10831
Description: Lemma for grothprim 10832. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.)
Assertion
Ref Expression
grothprimlem ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
Distinct variable group:   𝑤,𝑣,𝑢,,𝑔

Proof of Theorem grothprimlem
StepHypRef Expression
1 dfpr2 4648 . . 3 {𝑢, 𝑣} = { ∣ ( = 𝑢 = 𝑣)}
21eleq1i 2823 . 2 ({𝑢, 𝑣} ∈ 𝑤 ↔ { ∣ ( = 𝑢 = 𝑣)} ∈ 𝑤)
3 clabel 2880 . 2 ({ ∣ ( = 𝑢 = 𝑣)} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
42, 3bitri 274 1 ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 844  wal 1538  wex 1780  wcel 2105  {cab 2708  {cpr 4631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-v 3475  df-un 3954  df-sn 4630  df-pr 4632
This theorem is referenced by:  grothprim  10832
  Copyright terms: Public domain W3C validator