MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothprimlem Structured version   Visualization version   GIF version

Theorem grothprimlem 10731
Description: Lemma for grothprim 10732. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.)
Assertion
Ref Expression
grothprimlem ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
Distinct variable group:   𝑤,𝑣,𝑢,,𝑔

Proof of Theorem grothprimlem
StepHypRef Expression
1 dfpr2 4596 . . 3 {𝑢, 𝑣} = { ∣ ( = 𝑢 = 𝑣)}
21eleq1i 2824 . 2 ({𝑢, 𝑣} ∈ 𝑤 ↔ { ∣ ( = 𝑢 = 𝑣)} ∈ 𝑤)
3 clabel 2878 . 2 ({ ∣ ( = 𝑢 = 𝑣)} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
42, 3bitri 275 1 ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  wal 1539  wex 1780  wcel 2113  {cab 2711  {cpr 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-un 3903  df-sn 4576  df-pr 4578
This theorem is referenced by:  grothprim  10732
  Copyright terms: Public domain W3C validator