| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grothprimlem | Structured version Visualization version GIF version | ||
| Description: Lemma for grothprim 10722. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.) |
| Ref | Expression |
|---|---|
| grothprimlem | ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpr2 4597 | . . 3 ⊢ {𝑢, 𝑣} = {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} | |
| 2 | 1 | eleq1i 2822 | . 2 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤) |
| 3 | clabel 2877 | . 2 ⊢ ({ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1539 ∃wex 1780 ∈ wcel 2111 {cab 2709 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: grothprim 10722 |
| Copyright terms: Public domain | W3C validator |