Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > grothprimlem | Structured version Visualization version GIF version |
Description: Lemma for grothprim 10521. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.) |
Ref | Expression |
---|---|
grothprimlem | ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 4577 | . . 3 ⊢ {𝑢, 𝑣} = {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} | |
2 | 1 | eleq1i 2829 | . 2 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤) |
3 | clabel 2884 | . 2 ⊢ ({ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) | |
4 | 2, 3 | bitri 274 | 1 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 843 ∀wal 1537 ∃wex 1783 ∈ wcel 2108 {cab 2715 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: grothprim 10521 |
Copyright terms: Public domain | W3C validator |