![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grothprimlem | Structured version Visualization version GIF version |
Description: Lemma for grothprim 10877. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.) |
Ref | Expression |
---|---|
grothprimlem | ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 4653 | . . 3 ⊢ {𝑢, 𝑣} = {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} | |
2 | 1 | eleq1i 2817 | . 2 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤) |
3 | clabel 2874 | . 2 ⊢ ({ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) | |
4 | 2, 3 | bitri 274 | 1 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 ∨ wo 845 ∀wal 1532 ∃wex 1774 ∈ wcel 2099 {cab 2703 {cpr 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-v 3464 df-un 3952 df-sn 4634 df-pr 4636 |
This theorem is referenced by: grothprim 10877 |
Copyright terms: Public domain | W3C validator |