![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grothprimlem | Structured version Visualization version GIF version |
Description: Lemma for grothprim 10832. Expand the membership of an unordered pair into primitives. (Contributed by NM, 29-Mar-2007.) |
Ref | Expression |
---|---|
grothprimlem | ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpr2 4648 | . . 3 ⊢ {𝑢, 𝑣} = {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} | |
2 | 1 | eleq1i 2823 | . 2 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ {ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤) |
3 | clabel 2880 | . 2 ⊢ ({ℎ ∣ (ℎ = 𝑢 ∨ ℎ = 𝑣)} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) | |
4 | 2, 3 | bitri 274 | 1 ⊢ ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔 ∈ 𝑤 ∧ ∀ℎ(ℎ ∈ 𝑔 ↔ (ℎ = 𝑢 ∨ ℎ = 𝑣)))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 844 ∀wal 1538 ∃wex 1780 ∈ wcel 2105 {cab 2708 {cpr 4631 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3954 df-sn 4630 df-pr 4632 |
This theorem is referenced by: grothprim 10832 |
Copyright terms: Public domain | W3C validator |