MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothprim Structured version   Visualization version   GIF version

Theorem grothprim 9856
Description: The Tarski-Grothendieck Axiom ax-groth 9845 expanded into set theory primitives using 163 symbols (allowing the defined symbols , , , and ). An open problem is whether a shorter equivalent exists (when expanded to primitives). (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
grothprim 𝑦(𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑔

Proof of Theorem grothprim
StepHypRef Expression
1 axgroth4 9854 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
2 3anass 1080 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))))
3 dfss2 3740 . . . . . . . . . . . . 13 (𝑤𝑧 ↔ ∀𝑢(𝑢𝑤𝑢𝑧))
4 elin 3947 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑦𝑣) ↔ (𝑤𝑦𝑤𝑣))
53, 4imbi12i 339 . . . . . . . . . . . 12 ((𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ (∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))
65albii 1895 . . . . . . . . . . 11 (∀𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))
76rexbii 3189 . . . . . . . . . 10 (∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∃𝑣𝑦𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))
8 df-rex 3067 . . . . . . . . . 10 (∃𝑣𝑦𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)) ↔ ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))))
97, 8bitri 264 . . . . . . . . 9 (∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))))
109ralbii 3129 . . . . . . . 8 (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∀𝑧𝑦𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))))
11 df-ral 3066 . . . . . . . 8 (∀𝑧𝑦𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))) ↔ ∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))))
1210, 11bitri 264 . . . . . . 7 (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))))
13 dfss2 3740 . . . . . . . . . . 11 (𝑧𝑦 ↔ ∀𝑤(𝑤𝑧𝑤𝑦))
14 vex 3354 . . . . . . . . . . . . . . 15 𝑦 ∈ V
15 difexg 4942 . . . . . . . . . . . . . . 15 (𝑦 ∈ V → (𝑦𝑧) ∈ V)
1614, 15ax-mp 5 . . . . . . . . . . . . . 14 (𝑦𝑧) ∈ V
17 vex 3354 . . . . . . . . . . . . . 14 𝑧 ∈ V
18 incom 3956 . . . . . . . . . . . . . . 15 ((𝑦𝑧) ∩ 𝑧) = (𝑧 ∩ (𝑦𝑧))
19 disjdif 4182 . . . . . . . . . . . . . . 15 (𝑧 ∩ (𝑦𝑧)) = ∅
2018, 19eqtri 2793 . . . . . . . . . . . . . 14 ((𝑦𝑧) ∩ 𝑧) = ∅
2116, 17, 20brdom6disj 9554 . . . . . . . . . . . . 13 ((𝑦𝑧) ≼ 𝑧 ↔ ∃𝑤(∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤))
2221orbi1i 899 . . . . . . . . . . . 12 (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ (∃𝑤(∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦))
23 19.44v 2080 . . . . . . . . . . . 12 (∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦) ↔ (∃𝑤(∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦))
2422, 23bitr4i 267 . . . . . . . . . . 11 (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ ∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦))
2513, 24imbi12i 339 . . . . . . . . . 10 ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) → ∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)))
26 19.35 1957 . . . . . . . . . 10 (∃𝑤((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) → ∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)))
2725, 26bitr4i 267 . . . . . . . . 9 ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∃𝑤((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)))
28 grothprimlem 9855 . . . . . . . . . . . . . . . . . 18 ({𝑣, 𝑢} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))))
2928mobii 2641 . . . . . . . . . . . . . . . . 17 (∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∃*𝑢𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))))
30 mo2v 2625 . . . . . . . . . . . . . . . . 17 (∃*𝑢𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) ↔ ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡))
3129, 30bitri 264 . . . . . . . . . . . . . . . 16 (∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡))
3231ralbii 3129 . . . . . . . . . . . . . . 15 (∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∀𝑣𝑧𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡))
33 df-ral 3066 . . . . . . . . . . . . . . 15 (∀𝑣𝑧𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡) ↔ ∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)))
3432, 33bitri 264 . . . . . . . . . . . . . 14 (∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)))
35 df-ral 3066 . . . . . . . . . . . . . . 15 (∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∀𝑣(𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤))
36 eldif 3733 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ (𝑦𝑧) ↔ (𝑣𝑦 ∧ ¬ 𝑣𝑧))
37 grothprimlem 9855 . . . . . . . . . . . . . . . . . . . 20 ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
3837rexbii 3189 . . . . . . . . . . . . . . . . . . 19 (∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑢𝑧𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
39 df-rex 3067 . . . . . . . . . . . . . . . . . . 19 (∃𝑢𝑧𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))) ↔ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))
4038, 39bitri 264 . . . . . . . . . . . . . . . . . 18 (∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))
4136, 40imbi12i 339 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ ((𝑣𝑦 ∧ ¬ 𝑣𝑧) → ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))
42 pm5.6 986 . . . . . . . . . . . . . . . . 17 (((𝑣𝑦 ∧ ¬ 𝑣𝑧) → ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))) ↔ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4341, 42bitri 264 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4443albii 1895 . . . . . . . . . . . . . . 15 (∀𝑣(𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4535, 44bitri 264 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4634, 45anbi12i 612 . . . . . . . . . . . . 13 ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ (∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))))
47 19.26 1949 . . . . . . . . . . . . 13 (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ↔ (∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))))
4846, 47bitr4i 267 . . . . . . . . . . . 12 ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ ∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))))
4948orbi1i 899 . . . . . . . . . . 11 (((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦) ↔ (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))
5049imbi2i 325 . . . . . . . . . 10 (((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)) ↔ ((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5150exbii 1924 . . . . . . . . 9 (∃𝑤((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)) ↔ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5227, 51bitri 264 . . . . . . . 8 ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5352albii 1895 . . . . . . 7 (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5412, 53anbi12i 612 . . . . . 6 ((∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∀𝑧𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
55 19.26 1949 . . . . . 6 (∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))) ↔ (∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∀𝑧𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
5654, 55bitr4i 267 . . . . 5 ((∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
5756anbi2i 609 . . . 4 ((𝑥𝑦 ∧ (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))) ↔ (𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))))
582, 57bitri 264 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))))
5958exbii 1924 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))))
601, 59mpbi 220 1 𝑦(𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wo 836  w3a 1071  wal 1629  wex 1852  wcel 2145  ∃*wmo 2619  wral 3061  wrex 3062  Vcvv 3351  cdif 3720  cin 3722  wss 3723  c0 4063  {cpr 4318   class class class wbr 4786  cdom 8105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-reg 8651  ax-inf2 8700  ax-cc 9457  ax-ac2 9485  ax-groth 9845
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5821  df-ord 5867  df-on 5868  df-lim 5869  df-suc 5870  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-isom 6038  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-om 7211  df-1st 7313  df-2nd 7314  df-wrecs 7557  df-recs 7619  df-rdg 7657  df-1o 7711  df-2o 7712  df-oadd 7715  df-er 7894  df-map 8009  df-en 8108  df-dom 8109  df-sdom 8110  df-fin 8111  df-oi 8569  df-card 8963  df-acn 8966  df-ac 9137  df-cda 9190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator