MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grothprim Structured version   Visualization version   GIF version

Theorem grothprim 10590
Description: The Tarski-Grothendieck Axiom ax-groth 10579 expanded into set theory primitives using 163 symbols (allowing the defined symbols , , , and ). An open problem is whether a shorter equivalent exists (when expanded to primitives). (Contributed by NM, 16-Apr-2007.)
Assertion
Ref Expression
grothprim 𝑦(𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
Distinct variable group:   𝑥,𝑦,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑔

Proof of Theorem grothprim
StepHypRef Expression
1 axgroth4 10588 . 2 𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))
2 3anass 1094 . . . 4 ((𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))))
3 dfss2 3907 . . . . . . . . . . . . 13 (𝑤𝑧 ↔ ∀𝑢(𝑢𝑤𝑢𝑧))
4 elin 3903 . . . . . . . . . . . . 13 (𝑤 ∈ (𝑦𝑣) ↔ (𝑤𝑦𝑤𝑣))
53, 4imbi12i 351 . . . . . . . . . . . 12 ((𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ (∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))
65albii 1822 . . . . . . . . . . 11 (∀𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))
76rexbii 3181 . . . . . . . . . 10 (∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∃𝑣𝑦𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))
8 df-rex 3070 . . . . . . . . . 10 (∃𝑣𝑦𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)) ↔ ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))))
97, 8bitri 274 . . . . . . . . 9 (∃𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))))
109ralbii 3092 . . . . . . . 8 (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∀𝑧𝑦𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))))
11 df-ral 3069 . . . . . . . 8 (∀𝑧𝑦𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣))) ↔ ∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))))
1210, 11bitri 274 . . . . . . 7 (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ↔ ∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))))
13 dfss2 3907 . . . . . . . . . . 11 (𝑧𝑦 ↔ ∀𝑤(𝑤𝑧𝑤𝑦))
14 vex 3436 . . . . . . . . . . . . . . 15 𝑦 ∈ V
1514difexi 5252 . . . . . . . . . . . . . 14 (𝑦𝑧) ∈ V
16 vex 3436 . . . . . . . . . . . . . 14 𝑧 ∈ V
17 disjdifr 4406 . . . . . . . . . . . . . 14 ((𝑦𝑧) ∩ 𝑧) = ∅
1815, 16, 17brdom6disj 10288 . . . . . . . . . . . . 13 ((𝑦𝑧) ≼ 𝑧 ↔ ∃𝑤(∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤))
1918orbi1i 911 . . . . . . . . . . . 12 (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ (∃𝑤(∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦))
20 19.44v 1996 . . . . . . . . . . . 12 (∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦) ↔ (∃𝑤(∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦))
2119, 20bitr4i 277 . . . . . . . . . . 11 (((𝑦𝑧) ≼ 𝑧𝑧𝑦) ↔ ∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦))
2213, 21imbi12i 351 . . . . . . . . . 10 ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) → ∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)))
23 19.35 1880 . . . . . . . . . 10 (∃𝑤((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)) ↔ (∀𝑤(𝑤𝑧𝑤𝑦) → ∃𝑤((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)))
2422, 23bitr4i 277 . . . . . . . . 9 ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∃𝑤((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)))
25 grothprimlem 10589 . . . . . . . . . . . . . . . . . 18 ({𝑣, 𝑢} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))))
2625mobii 2548 . . . . . . . . . . . . . . . . 17 (∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∃*𝑢𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))))
27 df-mo 2540 . . . . . . . . . . . . . . . . 17 (∃*𝑢𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) ↔ ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡))
2826, 27bitri 274 . . . . . . . . . . . . . . . 16 (∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡))
2928ralbii 3092 . . . . . . . . . . . . . . 15 (∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∀𝑣𝑧𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡))
30 df-ral 3069 . . . . . . . . . . . . . . 15 (∀𝑣𝑧𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡) ↔ ∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)))
3129, 30bitri 274 . . . . . . . . . . . . . 14 (∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ↔ ∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)))
32 df-ral 3069 . . . . . . . . . . . . . . 15 (∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∀𝑣(𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤))
33 eldif 3897 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ (𝑦𝑧) ↔ (𝑣𝑦 ∧ ¬ 𝑣𝑧))
34 grothprimlem 10589 . . . . . . . . . . . . . . . . . . . 20 ({𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
3534rexbii 3181 . . . . . . . . . . . . . . . . . . 19 (∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑢𝑧𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))
36 df-rex 3070 . . . . . . . . . . . . . . . . . . 19 (∃𝑢𝑧𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))) ↔ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))
3735, 36bitri 274 . . . . . . . . . . . . . . . . . 18 (∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))
3833, 37imbi12i 351 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ ((𝑣𝑦 ∧ ¬ 𝑣𝑧) → ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))
39 pm5.6 999 . . . . . . . . . . . . . . . . 17 (((𝑣𝑦 ∧ ¬ 𝑣𝑧) → ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))) ↔ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4038, 39bitri 274 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4140albii 1822 . . . . . . . . . . . . . . 15 (∀𝑣(𝑣 ∈ (𝑦𝑧) → ∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4232, 41bitri 274 . . . . . . . . . . . . . 14 (∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤 ↔ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣)))))))
4331, 42anbi12i 627 . . . . . . . . . . . . 13 ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ (∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))))
44 19.26 1873 . . . . . . . . . . . . 13 (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ↔ (∀𝑣(𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ ∀𝑣(𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))))
4543, 44bitr4i 277 . . . . . . . . . . . 12 ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ↔ ∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))))
4645orbi1i 911 . . . . . . . . . . 11 (((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦) ↔ (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))
4746imbi2i 336 . . . . . . . . . 10 (((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)) ↔ ((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
4847exbii 1850 . . . . . . . . 9 (∃𝑤((𝑤𝑧𝑤𝑦) → ((∀𝑣𝑧 ∃*𝑢{𝑣, 𝑢} ∈ 𝑤 ∧ ∀𝑣 ∈ (𝑦𝑧)∃𝑢𝑧 {𝑢, 𝑣} ∈ 𝑤) ∨ 𝑧𝑦)) ↔ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
4924, 48bitri 274 . . . . . . . 8 ((𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5049albii 1822 . . . . . . 7 (∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)) ↔ ∀𝑧𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))
5112, 50anbi12i 627 . . . . . 6 ((∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∀𝑧𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
52 19.26 1873 . . . . . 6 (∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))) ↔ (∀𝑧(𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∀𝑧𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
5351, 52bitr4i 277 . . . . 5 ((∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
5453anbi2i 623 . . . 4 ((𝑥𝑦 ∧ (∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦)))) ↔ (𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))))
552, 54bitri 274 . . 3 ((𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ (𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))))
5655exbii 1850 . 2 (∃𝑦(𝑥𝑦 ∧ ∀𝑧𝑦𝑣𝑦𝑤(𝑤𝑧𝑤 ∈ (𝑦𝑣)) ∧ ∀𝑧(𝑧𝑦 → ((𝑦𝑧) ≼ 𝑧𝑧𝑦))) ↔ ∃𝑦(𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦)))))
571, 56mpbi 229 1 𝑦(𝑥𝑦 ∧ ∀𝑧((𝑧𝑦 → ∃𝑣(𝑣𝑦 ∧ ∀𝑤(∀𝑢(𝑢𝑤𝑢𝑧) → (𝑤𝑦𝑤𝑣)))) ∧ ∃𝑤((𝑤𝑧𝑤𝑦) → (∀𝑣((𝑣𝑧 → ∃𝑡𝑢(∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑣 = 𝑢))) → 𝑢 = 𝑡)) ∧ (𝑣𝑦 → (𝑣𝑧 ∨ ∃𝑢(𝑢𝑧 ∧ ∃𝑔(𝑔𝑤 ∧ ∀(𝑔 ↔ ( = 𝑢 = 𝑣))))))) ∨ 𝑧𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086  wal 1537  wex 1782  wcel 2106  ∃*wmo 2538  wral 3064  wrex 3065  cdif 3884  cin 3886  wss 3887  {cpr 4563   class class class wbr 5074  cdom 8731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399  ax-cc 10191  ax-ac2 10219  ax-groth 10579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator