MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlbn Structured version   Visualization version   GIF version

Theorem hlbn 25320
Description: Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.)
Assertion
Ref Expression
hlbn (𝑊 ∈ ℂHil → 𝑊 ∈ Ban)

Proof of Theorem hlbn
StepHypRef Expression
1 ishl 25319 . 2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
21simplbi 497 1 (𝑊 ∈ ℂHil → 𝑊 ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  ℂPreHilccph 25123  Bancbn 25290  ℂHilchl 25291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-in 3938  df-hl 25294
This theorem is referenced by:  hlcms  25323  hlprlem  25324  cmslsschl  25334  chlcsschl  25335
  Copyright terms: Public domain W3C validator