MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlbn Structured version   Visualization version   GIF version

Theorem hlbn 25284
Description: Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.)
Assertion
Ref Expression
hlbn (π‘Š ∈ β„‚Hil β†’ π‘Š ∈ Ban)

Proof of Theorem hlbn
StepHypRef Expression
1 ishl 25283 . 2 (π‘Š ∈ β„‚Hil ↔ (π‘Š ∈ Ban ∧ π‘Š ∈ β„‚PreHil))
21simplbi 497 1 (π‘Š ∈ β„‚Hil β†’ π‘Š ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2099  β„‚PreHilccph 25087  Bancbn 25254  β„‚Hilchl 25255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3472  df-in 3952  df-hl 25258
This theorem is referenced by:  hlcms  25287  hlprlem  25288  cmslsschl  25298  chlcsschl  25299
  Copyright terms: Public domain W3C validator