| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlbn | Structured version Visualization version GIF version | ||
| Description: Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) |
| Ref | Expression |
|---|---|
| hlbn | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Ban) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishl 25319 | . 2 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Ban) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℂPreHilccph 25123 Bancbn 25290 ℂHilchl 25291 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-in 3938 df-hl 25294 |
| This theorem is referenced by: hlcms 25323 hlprlem 25324 cmslsschl 25334 chlcsschl 25335 |
| Copyright terms: Public domain | W3C validator |