![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlbn | Structured version Visualization version GIF version |
Description: Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.) |
Ref | Expression |
---|---|
hlbn | β’ (π β βHil β π β Ban) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl 25214 | . 2 β’ (π β βHil β (π β Ban β§ π β βPreHil)) | |
2 | 1 | simplbi 497 | 1 β’ (π β βHil β π β Ban) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 βPreHilccph 25018 Bancbn 25185 βHilchl 25186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3948 df-hl 25189 |
This theorem is referenced by: hlcms 25218 hlprlem 25219 cmslsschl 25229 chlcsschl 25230 |
Copyright terms: Public domain | W3C validator |