MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlbn Structured version   Visualization version   GIF version

Theorem hlbn 24730
Description: Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.)
Assertion
Ref Expression
hlbn (π‘Š ∈ β„‚Hil β†’ π‘Š ∈ Ban)

Proof of Theorem hlbn
StepHypRef Expression
1 ishl 24729 . 2 (π‘Š ∈ β„‚Hil ↔ (π‘Š ∈ Ban ∧ π‘Š ∈ β„‚PreHil))
21simplbi 499 1 (π‘Š ∈ β„‚Hil β†’ π‘Š ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∈ wcel 2107  β„‚PreHilccph 24533  Bancbn 24700  β„‚Hilchl 24701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-v 3448  df-in 3918  df-hl 24704
This theorem is referenced by:  hlcms  24733  hlprlem  24734  cmslsschl  24744  chlcsschl  24745
  Copyright terms: Public domain W3C validator