MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlbn Structured version   Visualization version   GIF version

Theorem hlbn 25416
Description: Every subcomplex Hilbert space is a Banach space. (Contributed by Steve Rodriguez, 28-Apr-2007.)
Assertion
Ref Expression
hlbn (𝑊 ∈ ℂHil → 𝑊 ∈ Ban)

Proof of Theorem hlbn
StepHypRef Expression
1 ishl 25415 . 2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
21simplbi 497 1 (𝑊 ∈ ℂHil → 𝑊 ∈ Ban)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  ℂPreHilccph 25219  Bancbn 25386  ℂHilchl 25387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-hl 25390
This theorem is referenced by:  hlcms  25419  hlprlem  25420  cmslsschl  25430  chlcsschl  25431
  Copyright terms: Public domain W3C validator