MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmslsschl Structured version   Visualization version   GIF version

Theorem cmslsschl 23980
Description: A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022.)
Hypotheses
Ref Expression
cmslsschl.x 𝑋 = (𝑊s 𝑈)
cmslsschl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
cmslsschl ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂHil)

Proof of Theorem cmslsschl
StepHypRef Expression
1 hlbn 23966 . . . . 5 (𝑊 ∈ ℂHil → 𝑊 ∈ Ban)
2 bnnvc 23943 . . . . 5 (𝑊 ∈ Ban → 𝑊 ∈ NrmVec)
31, 2syl 17 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ NrmVec)
433ad2ant1 1129 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑊 ∈ NrmVec)
5 eqid 2821 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
65bnsca 23942 . . . . 5 (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp)
71, 6syl 17 . . . 4 (𝑊 ∈ ℂHil → (Scalar‘𝑊) ∈ CMetSp)
873ad2ant1 1129 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ CMetSp)
9 3simpc 1146 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → (𝑋 ∈ CMetSp ∧ 𝑈𝑆))
10 cmslsschl.x . . . 4 𝑋 = (𝑊s 𝑈)
11 cmslsschl.s . . . 4 𝑆 = (LSubSp‘𝑊)
1210, 11cmslssbn 23975 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈𝑆)) → 𝑋 ∈ Ban)
134, 8, 9, 12syl21anc 835 . 2 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ Ban)
14 hlcph 23967 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
1510, 11cphsscph 23854 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
1614, 15sylan 582 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
17163adant2 1127 . 2 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
18 ishl 23965 . 2 (𝑋 ∈ ℂHil ↔ (𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil))
1913, 17, 18sylanbrc 585 1 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cfv 6355  (class class class)co 7156  s cress 16484  Scalarcsca 16568  LSubSpclss 19703  NrmVeccnvc 23191  ℂPreHilccph 23770  CMetSpccms 23935  Bancbn 23936  ℂHilchl 23937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ico 12745  df-seq 13371  df-exp 13431  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ds 16587  df-rest 16696  df-topn 16697  df-0g 16715  df-topgen 16717  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-mgp 19240  df-ur 19252  df-ring 19299  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-lmhm 19794  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-phl 20770  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nlm 23196  df-nvc 23197  df-cph 23772  df-bn 23939  df-hl 23940
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator