Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmslsschl Structured version   Visualization version   GIF version

Theorem cmslsschl 23991
 Description: A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022.)
Hypotheses
Ref Expression
cmslsschl.x 𝑋 = (𝑊s 𝑈)
cmslsschl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
cmslsschl ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂHil)

Proof of Theorem cmslsschl
StepHypRef Expression
1 hlbn 23977 . . . . 5 (𝑊 ∈ ℂHil → 𝑊 ∈ Ban)
2 bnnvc 23954 . . . . 5 (𝑊 ∈ Ban → 𝑊 ∈ NrmVec)
31, 2syl 17 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ NrmVec)
433ad2ant1 1130 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑊 ∈ NrmVec)
5 eqid 2798 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
65bnsca 23953 . . . . 5 (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp)
71, 6syl 17 . . . 4 (𝑊 ∈ ℂHil → (Scalar‘𝑊) ∈ CMetSp)
873ad2ant1 1130 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ CMetSp)
9 3simpc 1147 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → (𝑋 ∈ CMetSp ∧ 𝑈𝑆))
10 cmslsschl.x . . . 4 𝑋 = (𝑊s 𝑈)
11 cmslsschl.s . . . 4 𝑆 = (LSubSp‘𝑊)
1210, 11cmslssbn 23986 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈𝑆)) → 𝑋 ∈ Ban)
134, 8, 9, 12syl21anc 836 . 2 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ Ban)
14 hlcph 23978 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
1510, 11cphsscph 23865 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
1614, 15sylan 583 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
17163adant2 1128 . 2 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
18 ishl 23976 . 2 (𝑋 ∈ ℂHil ↔ (𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil))
1913, 17, 18sylanbrc 586 1 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂHil)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ‘cfv 6325  (class class class)co 7136   ↾s cress 16479  Scalarcsca 16563  LSubSpclss 19700  NrmVeccnvc 23198  ℂPreHilccph 23781  CMetSpccms 23946  Bancbn 23947  ℂHilchl 23948 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-map 8394  df-en 8496  df-dom 8497  df-sdom 8498  df-sup 8893  df-inf 8894  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11629  df-2 11691  df-3 11692  df-4 11693  df-5 11694  df-6 11695  df-7 11696  df-8 11697  df-9 11698  df-n0 11889  df-z 11973  df-dec 12090  df-uz 12235  df-q 12340  df-rp 12381  df-xneg 12498  df-xadd 12499  df-xmul 12500  df-ico 12735  df-seq 13368  df-exp 13429  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ds 16582  df-rest 16691  df-topn 16692  df-0g 16710  df-topgen 16712  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18101  df-minusg 18102  df-sbg 18103  df-subg 18272  df-ghm 18352  df-mgp 19237  df-ur 19249  df-ring 19296  df-subrg 19530  df-lmod 19633  df-lss 19701  df-lsp 19741  df-lmhm 19791  df-lvec 19872  df-sra 19941  df-rgmod 19942  df-psmet 20087  df-xmet 20088  df-met 20089  df-bl 20090  df-mopn 20091  df-phl 20320  df-top 21509  df-topon 21526  df-topsp 21548  df-bases 21561  df-xms 22937  df-ms 22938  df-nm 23199  df-ngp 23200  df-nlm 23203  df-nvc 23204  df-cph 23783  df-bn 23950  df-hl 23951 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator