MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmslsschl Structured version   Visualization version   GIF version

Theorem cmslsschl 25302
Description: A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022.)
Hypotheses
Ref Expression
cmslsschl.x 𝑋 = (𝑊s 𝑈)
cmslsschl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
cmslsschl ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂHil)

Proof of Theorem cmslsschl
StepHypRef Expression
1 hlbn 25288 . . . . 5 (𝑊 ∈ ℂHil → 𝑊 ∈ Ban)
2 bnnvc 25265 . . . . 5 (𝑊 ∈ Ban → 𝑊 ∈ NrmVec)
31, 2syl 17 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ NrmVec)
433ad2ant1 1133 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑊 ∈ NrmVec)
5 eqid 2731 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
65bnsca 25264 . . . . 5 (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp)
71, 6syl 17 . . . 4 (𝑊 ∈ ℂHil → (Scalar‘𝑊) ∈ CMetSp)
873ad2ant1 1133 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ CMetSp)
9 3simpc 1150 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → (𝑋 ∈ CMetSp ∧ 𝑈𝑆))
10 cmslsschl.x . . . 4 𝑋 = (𝑊s 𝑈)
11 cmslsschl.s . . . 4 𝑆 = (LSubSp‘𝑊)
1210, 11cmslssbn 25297 . . 3 (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈𝑆)) → 𝑋 ∈ Ban)
134, 8, 9, 12syl21anc 837 . 2 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ Ban)
14 hlcph 25289 . . . 4 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
1510, 11cphsscph 25176 . . . 4 ((𝑊 ∈ ℂPreHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
1614, 15sylan 580 . . 3 ((𝑊 ∈ ℂHil ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
17163adant2 1131 . 2 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂPreHil)
18 ishl 25287 . 2 (𝑋 ∈ ℂHil ↔ (𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil))
1913, 17, 18sylanbrc 583 1 ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈𝑆) → 𝑋 ∈ ℂHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  s cress 17138  Scalarcsca 17161  LSubSpclss 20862  NrmVeccnvc 24494  ℂPreHilccph 25091  CMetSpccms 25257  Bancbn 25258  ℂHilchl 25259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-dec 12586  df-uz 12730  df-q 12844  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ico 13248  df-seq 13906  df-exp 13966  df-cj 15003  df-re 15004  df-im 15005  df-sqrt 15139  df-abs 15140  df-sets 17072  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-plusg 17171  df-mulr 17172  df-sca 17174  df-vsca 17175  df-ip 17176  df-tset 17177  df-ds 17180  df-rest 17323  df-topn 17324  df-0g 17342  df-topgen 17344  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-grp 18846  df-minusg 18847  df-sbg 18848  df-subg 19033  df-ghm 19123  df-cmn 19692  df-abl 19693  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrg 20483  df-lmod 20793  df-lss 20863  df-lsp 20903  df-lmhm 20954  df-lvec 21035  df-sra 21105  df-rgmod 21106  df-psmet 21281  df-xmet 21282  df-met 21283  df-bl 21284  df-mopn 21285  df-phl 21561  df-top 22807  df-topon 22824  df-topsp 22846  df-bases 22859  df-xms 24233  df-ms 24234  df-nm 24495  df-ngp 24496  df-nlm 24499  df-nvc 24500  df-cph 25093  df-bn 25261  df-hl 25262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator