![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cmslsschl | Structured version Visualization version GIF version |
Description: A complete linear subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by AV, 8-Oct-2022.) |
Ref | Expression |
---|---|
cmslsschl.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
cmslsschl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
cmslsschl | ⊢ ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlbn 25418 | . . . . 5 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Ban) | |
2 | bnnvc 25395 | . . . . 5 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ NrmVec) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ NrmVec) |
4 | 3 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑊 ∈ NrmVec) |
5 | eqid 2740 | . . . . . 6 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
6 | 5 | bnsca 25394 | . . . . 5 ⊢ (𝑊 ∈ Ban → (Scalar‘𝑊) ∈ CMetSp) |
7 | 1, 6 | syl 17 | . . . 4 ⊢ (𝑊 ∈ ℂHil → (Scalar‘𝑊) ∈ CMetSp) |
8 | 7 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (Scalar‘𝑊) ∈ CMetSp) |
9 | 3simpc 1150 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) | |
10 | cmslsschl.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
11 | cmslsschl.s | . . . 4 ⊢ 𝑆 = (LSubSp‘𝑊) | |
12 | 10, 11 | cmslssbn 25427 | . . 3 ⊢ (((𝑊 ∈ NrmVec ∧ (Scalar‘𝑊) ∈ CMetSp) ∧ (𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆)) → 𝑋 ∈ Ban) |
13 | 4, 8, 9, 12 | syl21anc 837 | . 2 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) |
14 | hlcph 25419 | . . . 4 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | |
15 | 10, 11 | cphsscph 25306 | . . . 4 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂPreHil) |
16 | 14, 15 | sylan 579 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂPreHil) |
17 | 16 | 3adant2 1131 | . 2 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂPreHil) |
18 | ishl 25417 | . 2 ⊢ (𝑋 ∈ ℂHil ↔ (𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil)) | |
19 | 13, 17, 18 | sylanbrc 582 | 1 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑋 ∈ CMetSp ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂHil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ‘cfv 6575 (class class class)co 7450 ↾s cress 17289 Scalarcsca 17316 LSubSpclss 20954 NrmVeccnvc 24617 ℂPreHilccph 25221 CMetSpccms 25387 Bancbn 25388 ℂHilchl 25389 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 ax-pre-sup 11264 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-sup 9513 df-inf 9514 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-div 11950 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-q 13016 df-rp 13060 df-xneg 13177 df-xadd 13178 df-xmul 13179 df-ico 13415 df-seq 14055 df-exp 14115 df-cj 15150 df-re 15151 df-im 15152 df-sqrt 15286 df-abs 15287 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ds 17335 df-rest 17484 df-topn 17485 df-0g 17503 df-topgen 17505 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-grp 18978 df-minusg 18979 df-sbg 18980 df-subg 19165 df-ghm 19255 df-cmn 19826 df-abl 19827 df-mgp 20164 df-rng 20182 df-ur 20211 df-ring 20264 df-subrg 20599 df-lmod 20884 df-lss 20955 df-lsp 20995 df-lmhm 21046 df-lvec 21127 df-sra 21197 df-rgmod 21198 df-psmet 21381 df-xmet 21382 df-met 21383 df-bl 21384 df-mopn 21385 df-phl 21669 df-top 22923 df-topon 22940 df-topsp 22962 df-bases 22976 df-xms 24353 df-ms 24354 df-nm 24618 df-ngp 24619 df-nlm 24622 df-nvc 24623 df-cph 25223 df-bn 25391 df-hl 25392 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |