| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > chlcsschl | Structured version Visualization version GIF version | ||
| Description: A closed subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 10-Apr-2008.) (Revised by AV, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| cmslsschl.x | ⊢ 𝑋 = (𝑊 ↾s 𝑈) |
| chlcsschl.s | ⊢ 𝑆 = (ClSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| chlcsschl | ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlbn 25269 | . . . 4 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Ban) | |
| 2 | hlcph 25270 | . . . 4 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) | |
| 3 | 1, 2 | jca 511 | . . 3 ⊢ (𝑊 ∈ ℂHil → (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) |
| 4 | cmslsschl.x | . . . 4 ⊢ 𝑋 = (𝑊 ↾s 𝑈) | |
| 5 | chlcsschl.s | . . . 4 ⊢ 𝑆 = (ClSubSp‘𝑊) | |
| 6 | 4, 5 | bncssbn 25280 | . . 3 ⊢ (((𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil) ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) |
| 7 | 3, 6 | sylan 580 | . 2 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ Ban) |
| 8 | hlphl 25271 | . . . 4 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ PreHil) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 10 | 5, 9 | csslss 21606 | . . . 4 ⊢ ((𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
| 11 | 8, 10 | sylan 580 | . . 3 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆) → 𝑈 ∈ (LSubSp‘𝑊)) |
| 12 | 4, 9 | cphsscph 25157 | . . 3 ⊢ ((𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ (LSubSp‘𝑊)) → 𝑋 ∈ ℂPreHil) |
| 13 | 2, 11, 12 | syl2an2r 685 | . 2 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂPreHil) |
| 14 | ishl 25268 | . 2 ⊢ (𝑋 ∈ ℂHil ↔ (𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil)) | |
| 15 | 7, 13, 14 | sylanbrc 583 | 1 ⊢ ((𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝑆) → 𝑋 ∈ ℂHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6513 (class class class)co 7389 ↾s cress 17206 LSubSpclss 20843 PreHilcphl 21539 ClSubSpccss 21576 ℂPreHilccph 25072 Bancbn 25239 ℂHilchl 25240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 ax-addf 11153 ax-mulf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ico 13318 df-icc 13319 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-cring 20151 df-oppr 20252 df-dvdsr 20272 df-unit 20273 df-invr 20303 df-dvr 20316 df-rhm 20387 df-subrng 20461 df-subrg 20485 df-drng 20646 df-staf 20754 df-srng 20755 df-lmod 20774 df-lss 20844 df-lsp 20884 df-lmhm 20935 df-lvec 21016 df-sra 21086 df-rgmod 21087 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-phl 21541 df-ipf 21542 df-ocv 21578 df-css 21579 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-cn 23120 df-cnp 23121 df-t1 23207 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-flim 23832 df-xms 24214 df-ms 24215 df-tms 24216 df-nm 24476 df-ngp 24477 df-tng 24478 df-nlm 24480 df-nvc 24481 df-clm 24969 df-cph 25074 df-tcph 25075 df-cfil 25161 df-cmet 25163 df-cms 25241 df-bn 25242 df-hl 25243 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |