MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcph Structured version   Visualization version   GIF version

Theorem hlcph 24872
Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
hlcph (๐‘Š โˆˆ โ„‚Hil โ†’ ๐‘Š โˆˆ โ„‚PreHil)

Proof of Theorem hlcph
StepHypRef Expression
1 ishl 24870 . 2 (๐‘Š โˆˆ โ„‚Hil โ†” (๐‘Š โˆˆ Ban โˆง ๐‘Š โˆˆ โ„‚PreHil))
21simprbi 497 1 (๐‘Š โˆˆ โ„‚Hil โ†’ ๐‘Š โˆˆ โ„‚PreHil)
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆˆ wcel 2106  โ„‚PreHilccph 24674  Bancbn 24841  โ„‚Hilchl 24842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3954  df-hl 24845
This theorem is referenced by:  hlphl  24873  hlprlem  24875  cmslsschl  24885  chlcsschl  24886  pjthlem1  24945  pjthlem2  24946  cldcss  24949
  Copyright terms: Public domain W3C validator