Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlcph | Structured version Visualization version GIF version |
Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
hlcph | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl 24431 | . 2 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ℂPreHilccph 24235 Bancbn 24402 ℂHilchl 24403 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-hl 24406 |
This theorem is referenced by: hlphl 24434 hlprlem 24436 cmslsschl 24446 chlcsschl 24447 pjthlem1 24506 pjthlem2 24507 cldcss 24510 |
Copyright terms: Public domain | W3C validator |