![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcph | Structured version Visualization version GIF version |
Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
hlcph | โข (๐ โ โHil โ ๐ โ โPreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl 24870 | . 2 โข (๐ โ โHil โ (๐ โ Ban โง ๐ โ โPreHil)) | |
2 | 1 | simprbi 497 | 1 โข (๐ โ โHil โ ๐ โ โPreHil) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wcel 2106 โPreHilccph 24674 Bancbn 24841 โHilchl 24842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-hl 24845 |
This theorem is referenced by: hlphl 24873 hlprlem 24875 cmslsschl 24885 chlcsschl 24886 pjthlem1 24945 pjthlem2 24946 cldcss 24949 |
Copyright terms: Public domain | W3C validator |