| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlcph | Structured version Visualization version GIF version | ||
| Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| Ref | Expression |
|---|---|
| hlcph | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishl 25278 | . 2 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ℂPreHilccph 25082 Bancbn 25249 ℂHilchl 25250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-in 3912 df-hl 25253 |
| This theorem is referenced by: hlphl 25281 hlprlem 25283 cmslsschl 25293 chlcsschl 25294 pjthlem1 25353 pjthlem2 25354 cldcss 25357 |
| Copyright terms: Public domain | W3C validator |