Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlcph | Structured version Visualization version GIF version |
Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
hlcph | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl 24076 | . 2 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | |
2 | 1 | simprbi 500 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2111 ℂPreHilccph 23881 Bancbn 24047 ℂHilchl 24048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3867 df-hl 24051 |
This theorem is referenced by: hlphl 24079 hlprlem 24081 cmslsschl 24091 chlcsschl 24092 pjthlem1 24151 pjthlem2 24152 cldcss 24155 |
Copyright terms: Public domain | W3C validator |