MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcph Structured version   Visualization version   GIF version

Theorem hlcph 24433
Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
hlcph (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)

Proof of Theorem hlcph
StepHypRef Expression
1 ishl 24431 . 2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
21simprbi 496 1 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  ℂPreHilccph 24235  Bancbn 24402  ℂHilchl 24403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-hl 24406
This theorem is referenced by:  hlphl  24434  hlprlem  24436  cmslsschl  24446  chlcsschl  24447  pjthlem1  24506  pjthlem2  24507  cldcss  24510
  Copyright terms: Public domain W3C validator