Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlcph | Structured version Visualization version GIF version |
Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
hlcph | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishl 24526 | . 2 ⊢ (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ℂPreHilccph 24330 Bancbn 24497 ℂHilchl 24498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-hl 24501 |
This theorem is referenced by: hlphl 24529 hlprlem 24531 cmslsschl 24541 chlcsschl 24542 pjthlem1 24601 pjthlem2 24602 cldcss 24605 |
Copyright terms: Public domain | W3C validator |