MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcph Structured version   Visualization version   GIF version

Theorem hlcph 25289
Description: Every subcomplex Hilbert space is a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
hlcph (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)

Proof of Theorem hlcph
StepHypRef Expression
1 ishl 25287 . 2 (𝑊 ∈ ℂHil ↔ (𝑊 ∈ Ban ∧ 𝑊 ∈ ℂPreHil))
21simprbi 496 1 (𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  ℂPreHilccph 25091  Bancbn 25258  ℂHilchl 25259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3909  df-hl 25262
This theorem is referenced by:  hlphl  25290  hlprlem  25292  cmslsschl  25302  chlcsschl  25303  pjthlem1  25362  pjthlem2  25363  cldcss  25366
  Copyright terms: Public domain W3C validator