![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlcms | Structured version Visualization version GIF version |
Description: Every subcomplex Hilbert space is a complete metric space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
Ref | Expression |
---|---|
hlcms | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlbn 25422 | . 2 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Ban) | |
2 | bncms 25403 | . 2 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 CMetSpccms 25391 Bancbn 25392 ℂHilchl 25393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-iota 6522 df-fv 6577 df-bn 25395 df-hl 25396 |
This theorem is referenced by: pjthlem2 25497 |
Copyright terms: Public domain | W3C validator |