| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlcms | Structured version Visualization version GIF version | ||
| Description: Every subcomplex Hilbert space is a complete metric space. (Contributed by Mario Carneiro, 17-Oct-2015.) |
| Ref | Expression |
|---|---|
| hlcms | ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlbn 25333 | . 2 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ Ban) | |
| 2 | bncms 25314 | . 2 ⊢ (𝑊 ∈ Ban → 𝑊 ∈ CMetSp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 CMetSpccms 25302 Bancbn 25303 ℂHilchl 25304 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-iota 6494 df-fv 6549 df-bn 25306 df-hl 25307 |
| This theorem is referenced by: pjthlem2 25408 |
| Copyright terms: Public domain | W3C validator |