MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcms Structured version   Visualization version   GIF version

Theorem hlcms 25336
Description: Every subcomplex Hilbert space is a complete metric space. (Contributed by Mario Carneiro, 17-Oct-2015.)
Assertion
Ref Expression
hlcms (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp)

Proof of Theorem hlcms
StepHypRef Expression
1 hlbn 25333 . 2 (𝑊 ∈ ℂHil → 𝑊 ∈ Ban)
2 bncms 25314 . 2 (𝑊 ∈ Ban → 𝑊 ∈ CMetSp)
31, 2syl 17 1 (𝑊 ∈ ℂHil → 𝑊 ∈ CMetSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  CMetSpccms 25302  Bancbn 25303  ℂHilchl 25304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-iota 6494  df-fv 6549  df-bn 25306  df-hl 25307
This theorem is referenced by:  pjthlem2  25408
  Copyright terms: Public domain W3C validator