![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hlpar | Structured version Visualization version GIF version |
Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlpar.1 | β’ π = (BaseSetβπ) |
hlpar.2 | β’ πΊ = ( +π£ βπ) |
hlpar.4 | β’ π = ( Β·π OLD βπ) |
hlpar.6 | β’ π = (normCVβπ) |
Ref | Expression |
---|---|
hlpar | β’ ((π β CHilOLD β§ π΄ β π β§ π΅ β π) β (((πβ(π΄πΊπ΅))β2) + ((πβ(π΄πΊ(-1ππ΅)))β2)) = (2 Β· (((πβπ΄)β2) + ((πβπ΅)β2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlph 30636 | . 2 β’ (π β CHilOLD β π β CPreHilOLD) | |
2 | hlpar.1 | . . 3 β’ π = (BaseSetβπ) | |
3 | hlpar.2 | . . 3 β’ πΊ = ( +π£ βπ) | |
4 | hlpar.4 | . . 3 β’ π = ( Β·π OLD βπ) | |
5 | hlpar.6 | . . 3 β’ π = (normCVβπ) | |
6 | 2, 3, 4, 5 | phpar 30571 | . 2 β’ ((π β CPreHilOLD β§ π΄ β π β§ π΅ β π) β (((πβ(π΄πΊπ΅))β2) + ((πβ(π΄πΊ(-1ππ΅)))β2)) = (2 Β· (((πβπ΄)β2) + ((πβπ΅)β2)))) |
7 | 1, 6 | syl3an1 1160 | 1 β’ ((π β CHilOLD β§ π΄ β π β§ π΅ β π) β (((πβ(π΄πΊπ΅))β2) + ((πβ(π΄πΊ(-1ππ΅)))β2)) = (2 Β· (((πβπ΄)β2) + ((πβπ΅)β2)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1084 = wceq 1533 β wcel 2098 βcfv 6534 (class class class)co 7402 1c1 11108 + caddc 11110 Β· cmul 11112 -cneg 11444 2c2 12266 βcexp 14028 +π£ cpv 30332 BaseSetcba 30333 Β·π OLD cns 30334 normCVcnmcv 30337 CPreHilOLDccphlo 30559 CHilOLDchlo 30632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-1st 7969 df-2nd 7970 df-vc 30306 df-nv 30339 df-va 30342 df-ba 30343 df-sm 30344 df-0v 30345 df-nmcv 30347 df-ph 30560 df-hlo 30633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |