Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hlpar | Structured version Visualization version GIF version |
Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hlpar.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
hlpar.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
hlpar.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
hlpar.6 | ⊢ 𝑁 = (normCV‘𝑈) |
Ref | Expression |
---|---|
hlpar | ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hlph 28827 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) | |
2 | hlpar.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | hlpar.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
4 | hlpar.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
5 | hlpar.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
6 | 2, 3, 4, 5 | phpar 28762 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
7 | 1, 6 | syl3an1 1164 | 1 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ‘cfv 6340 (class class class)co 7173 1c1 10619 + caddc 10621 · cmul 10623 -cneg 10952 2c2 11774 ↑cexp 13524 +𝑣 cpv 28523 BaseSetcba 28524 ·𝑠OLD cns 28525 normCVcnmcv 28528 CPreHilOLDccphlo 28750 CHilOLDchlo 28823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-rep 5155 ax-sep 5168 ax-nul 5175 ax-pr 5297 ax-un 7482 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-reu 3061 df-rab 3063 df-v 3401 df-sbc 3682 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7176 df-oprab 7177 df-1st 7717 df-2nd 7718 df-vc 28497 df-nv 28530 df-va 28533 df-ba 28534 df-sm 28535 df-0v 28536 df-nmcv 28538 df-ph 28751 df-hlo 28824 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |