| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlpar | Structured version Visualization version GIF version | ||
| Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlpar.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| hlpar.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| hlpar.4 | ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) |
| hlpar.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| hlpar | ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlph 30864 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) | |
| 2 | hlpar.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | hlpar.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 4 | hlpar.4 | . . 3 ⊢ 𝑆 = ( ·𝑠OLD ‘𝑈) | |
| 5 | hlpar.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 6 | 2, 3, 4, 5 | phpar 30799 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
| 7 | 1, 6 | syl3an1 1163 | 1 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 1c1 11004 + caddc 11006 · cmul 11008 -cneg 11342 2c2 12177 ↑cexp 13965 +𝑣 cpv 30560 BaseSetcba 30561 ·𝑠OLD cns 30562 normCVcnmcv 30565 CPreHilOLDccphlo 30787 CHilOLDchlo 30860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-1st 7921 df-2nd 7922 df-vc 30534 df-nv 30567 df-va 30570 df-ba 30571 df-sm 30572 df-0v 30573 df-nmcv 30575 df-ph 30788 df-hlo 30861 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |