MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlpar Structured version   Visualization version   GIF version

Theorem hlpar 28835
Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlpar.1 𝑋 = (BaseSet‘𝑈)
hlpar.2 𝐺 = ( +𝑣𝑈)
hlpar.4 𝑆 = ( ·𝑠OLD𝑈)
hlpar.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
hlpar ((𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem hlpar
StepHypRef Expression
1 hlph 28827 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
2 hlpar.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hlpar.2 . . 3 𝐺 = ( +𝑣𝑈)
4 hlpar.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
5 hlpar.6 . . 3 𝑁 = (normCV𝑈)
62, 3, 4, 5phpar 28762 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
71, 6syl3an1 1164 1 ((𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2114  cfv 6340  (class class class)co 7173  1c1 10619   + caddc 10621   · cmul 10623  -cneg 10952  2c2 11774  cexp 13524   +𝑣 cpv 28523  BaseSetcba 28524   ·𝑠OLD cns 28525  normCVcnmcv 28528  CPreHilOLDccphlo 28750  CHilOLDchlo 28823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pr 5297  ax-un 7482
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3401  df-sbc 3682  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7176  df-oprab 7177  df-1st 7717  df-2nd 7718  df-vc 28497  df-nv 28530  df-va 28533  df-ba 28534  df-sm 28535  df-0v 28536  df-nmcv 28538  df-ph 28751  df-hlo 28824
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator