MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlpar Structured version   Visualization version   GIF version

Theorem hlpar 30872
Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
hlpar.1 𝑋 = (BaseSet‘𝑈)
hlpar.2 𝐺 = ( +𝑣𝑈)
hlpar.4 𝑆 = ( ·𝑠OLD𝑈)
hlpar.6 𝑁 = (normCV𝑈)
Assertion
Ref Expression
hlpar ((𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))

Proof of Theorem hlpar
StepHypRef Expression
1 hlph 30864 . 2 (𝑈 ∈ CHilOLD𝑈 ∈ CPreHilOLD)
2 hlpar.1 . . 3 𝑋 = (BaseSet‘𝑈)
3 hlpar.2 . . 3 𝐺 = ( +𝑣𝑈)
4 hlpar.4 . . 3 𝑆 = ( ·𝑠OLD𝑈)
5 hlpar.6 . . 3 𝑁 = (normCV𝑈)
62, 3, 4, 5phpar 30799 . 2 ((𝑈 ∈ CPreHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
71, 6syl3an1 1163 1 ((𝑈 ∈ CHilOLD𝐴𝑋𝐵𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝐺(-1𝑆𝐵)))↑2)) = (2 · (((𝑁𝐴)↑2) + ((𝑁𝐵)↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  1c1 11004   + caddc 11006   · cmul 11008  -cneg 11342  2c2 12177  cexp 13965   +𝑣 cpv 30560  BaseSetcba 30561   ·𝑠OLD cns 30562  normCVcnmcv 30565  CPreHilOLDccphlo 30787  CHilOLDchlo 30860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-1st 7921  df-2nd 7922  df-vc 30534  df-nv 30567  df-va 30570  df-ba 30571  df-sm 30572  df-0v 30573  df-nmcv 30575  df-ph 30788  df-hlo 30861
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator