| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hlpar2 | Structured version Visualization version GIF version | ||
| Description: The parallelogram law satisfied by Hilbert space vectors. (Contributed by Steve Rodriguez, 28-Apr-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hlpar2.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| hlpar2.2 | ⊢ 𝐺 = ( +𝑣 ‘𝑈) |
| hlpar2.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| hlpar2.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| Ref | Expression |
|---|---|
| hlpar2 | ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlph 30871 | . 2 ⊢ (𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD) | |
| 2 | hlpar2.1 | . . 3 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | hlpar2.2 | . . 3 ⊢ 𝐺 = ( +𝑣 ‘𝑈) | |
| 4 | hlpar2.3 | . . 3 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 5 | hlpar2.6 | . . 3 ⊢ 𝑁 = (normCV‘𝑈) | |
| 6 | 2, 3, 4, 5 | phpar2 30805 | . 2 ⊢ ((𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
| 7 | 1, 6 | syl3an1 1163 | 1 ⊢ ((𝑈 ∈ CHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (((𝑁‘(𝐴𝐺𝐵))↑2) + ((𝑁‘(𝐴𝑀𝐵))↑2)) = (2 · (((𝑁‘𝐴)↑2) + ((𝑁‘𝐵)↑2)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 + caddc 11016 · cmul 11018 2c2 12187 ↑cexp 13970 +𝑣 cpv 30567 BaseSetcba 30568 −𝑣 cnsb 30571 normCVcnmcv 30572 CPreHilOLDccphlo 30794 CHilOLDchlo 30867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 df-neg 11354 df-grpo 30475 df-gid 30476 df-ginv 30477 df-gdiv 30478 df-ablo 30527 df-vc 30541 df-nv 30574 df-va 30577 df-ba 30578 df-sm 30579 df-0v 30580 df-vs 30581 df-nmcv 30582 df-ph 30795 df-hlo 30868 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |