MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem6 Structured version   Visualization version   GIF version

Theorem mdetunilem6 22639
Description: Lemma for mdetuni 22644. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem6.ph (𝜓𝜑)
mdetunilem6.ef (𝜓 → (𝐸𝑁𝐹𝑁𝐸𝐹))
mdetunilem6.gh ((𝜓𝑏𝑁) → (𝐺𝐾𝐻𝐾))
mdetunilem6.i ((𝜓𝑎𝑁𝑏𝑁) → 𝐼𝐾)
Assertion
Ref Expression
mdetunilem6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝐺,𝑎   𝐻,𝑎   𝑥,𝐼,𝑦,𝑧,𝑤
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑏)   𝐼(𝑎,𝑏)

Proof of Theorem mdetunilem6
StepHypRef Expression
1 mdetuni.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 mdetuni.b . . . . 5 𝐵 = (Base‘𝐴)
3 mdetuni.k . . . . 5 𝐾 = (Base‘𝑅)
4 mdetuni.0g . . . . 5 0 = (0g𝑅)
5 mdetuni.1r . . . . 5 1 = (1r𝑅)
6 mdetuni.pg . . . . 5 + = (+g𝑅)
7 mdetuni.tg . . . . 5 · = (.r𝑅)
8 mdetuni.n . . . . 5 (𝜑𝑁 ∈ Fin)
9 mdetuni.r . . . . 5 (𝜑𝑅 ∈ Ring)
10 mdetuni.ff . . . . 5 (𝜑𝐷:𝐵𝐾)
11 mdetuni.al . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
12 mdetuni.li . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
13 mdetuni.sc . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
14 mdetunilem6.ph . . . . 5 (𝜓𝜑)
15 mdetunilem6.ef . . . . . 6 (𝜓 → (𝐸𝑁𝐹𝑁𝐸𝐹))
1615simp1d 1141 . . . . 5 (𝜓𝐸𝑁)
17 mdetunilem6.gh . . . . . . . 8 ((𝜓𝑏𝑁) → (𝐺𝐾𝐻𝐾))
1817simprd 495 . . . . . . 7 ((𝜓𝑏𝑁) → 𝐻𝐾)
19183adant2 1130 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
2017simpld 494 . . . . . . 7 ((𝜓𝑏𝑁) → 𝐺𝐾)
21203adant2 1130 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → 𝐺𝐾)
22 ringgrp 20256 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2314, 9, 223syl 18 . . . . . . . . . 10 (𝜓𝑅 ∈ Grp)
2423adantr 480 . . . . . . . . 9 ((𝜓𝑏𝑁) → 𝑅 ∈ Grp)
253, 6grpcl 18972 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝐻𝐾𝐺𝐾) → (𝐻 + 𝐺) ∈ 𝐾)
2624, 18, 20, 25syl3anc 1370 . . . . . . . 8 ((𝜓𝑏𝑁) → (𝐻 + 𝐺) ∈ 𝐾)
27263adant2 1130 . . . . . . 7 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻 + 𝐺) ∈ 𝐾)
28 mdetunilem6.i . . . . . . 7 ((𝜓𝑎𝑁𝑏𝑁) → 𝐼𝐾)
2927, 28ifcld 4577 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾)
3019, 21, 293jca 1127 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 30mdetunilem5 22638 . . . 4 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))))))
321, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 26, 28mdetunilem2 22635 . . . 4 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = 0 )
3315simp2d 1142 . . . . . . . 8 (𝜓𝐹𝑁)
3419, 28ifcld 4577 . . . . . . . . 9 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾)
3519, 21, 343jca 1127 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 35mdetunilem5 22638 . . . . . . 7 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))))
3715simp3d 1143 . . . . . . . . . . 11 (𝜓𝐸𝐹)
3837necomd 2994 . . . . . . . . . 10 (𝜓𝐹𝐸)
3933, 16, 383jca 1127 . . . . . . . . 9 (𝜓 → (𝐹𝑁𝐸𝑁𝐹𝐸))
401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 39, 18, 28mdetunilem2 22635 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) = 0 )
4140oveq1d 7446 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))))
4237neneqd 2943 . . . . . . . . . . . . . 14 (𝜓 → ¬ 𝐸 = 𝐹)
43 eqtr2 2759 . . . . . . . . . . . . . 14 ((𝑎 = 𝐸𝑎 = 𝐹) → 𝐸 = 𝐹)
4442, 43nsyl 140 . . . . . . . . . . . . 13 (𝜓 → ¬ (𝑎 = 𝐸𝑎 = 𝐹))
45443ad2ant1 1132 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → ¬ (𝑎 = 𝐸𝑎 = 𝐹))
46 ifcomnan 4587 . . . . . . . . . . . 12 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))
4745, 46syl 17 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))
4847mpoeq3dva 7510 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))
4948fveq2d 6911 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5014, 10syl 17 . . . . . . . . . 10 (𝜓𝐷:𝐵𝐾)
5114, 8syl 17 . . . . . . . . . . 11 (𝜓𝑁 ∈ Fin)
5221, 28ifcld 4577 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, 𝐺, 𝐼) ∈ 𝐾)
5319, 52ifcld 4577 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) ∈ 𝐾)
541, 3, 2, 51, 23, 53matbas2d 22445 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) ∈ 𝐵)
5550, 54ffvelcdmd 7105 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾)
5649, 55eqeltrrd 2840 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾)
573, 6, 4grplid 18998 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾) → ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5823, 56, 57syl2anc 584 . . . . . . 7 (𝜓 → ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5936, 41, 583eqtrd 2779 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
60 ifcomnan 4587 . . . . . . . . 9 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))
6145, 60syl 17 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))
6261mpoeq3dva 7510 . . . . . . 7 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼))))
6362fveq2d 6911 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))))
6459, 63, 493eqtr4d 2785 . . . . 5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))))
6521, 28ifcld 4577 . . . . . . . . 9 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾)
6619, 21, 653jca 1127 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾))
671, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 66mdetunilem5 22638 . . . . . . 7 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼))))))
681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 39, 20, 28mdetunilem2 22635 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼)))) = 0 )
6968oveq2d 7447 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ))
70 ifcomnan 4587 . . . . . . . . . . . 12 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))
7145, 70syl 17 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))
7271mpoeq3dva 7510 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))))
7372fveq2d 6911 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
7419, 28ifcld 4577 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, 𝐻, 𝐼) ∈ 𝐾)
7521, 74ifcld 4577 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) ∈ 𝐾)
761, 3, 2, 51, 23, 75matbas2d 22445 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) ∈ 𝐵)
7750, 76ffvelcdmd 7105 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾)
7873, 77eqeltrrd 2840 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾)
793, 6, 4grprid 18999 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8023, 78, 79syl2anc 584 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8167, 69, 803eqtrd 2779 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
82 ifcomnan 4587 . . . . . . . . 9 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))
8345, 82syl 17 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))
8483mpoeq3dva 7510 . . . . . . 7 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼))))
8584fveq2d 6911 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8681, 85, 733eqtr4d 2785 . . . . 5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))))
8764, 86oveq12d 7449 . . . 4 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))))
8831, 32, 873eqtr3rd 2784 . . 3 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 )
89 eqid 2735 . . . . 5 (invg𝑅) = (invg𝑅)
903, 6, 4, 89grpinvid1 19022 . . . 4 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾 ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾) → (((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 ))
9123, 55, 77, 90syl3anc 1370 . . 3 (𝜓 → (((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 ))
9288, 91mpbird 257 . 2 (𝜓 → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))))
9392eqcomd 2741 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  cdif 3960  ifcif 4531  {csn 4631   × cxp 5687  cres 5691  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  f cof 7695  Fincfn 8984  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  0gc0g 17486  Grpcgrp 18964  invgcminusg 18965  1rcur 20199  Ringcrg 20251   Mat cmat 22427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-pws 17496  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-ring 20253  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-mat 22428
This theorem is referenced by:  mdetunilem7  22640
  Copyright terms: Public domain W3C validator