Proof of Theorem mdetunilem6
Step | Hyp | Ref
| Expression |
1 | | mdetuni.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | mdetuni.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
3 | | mdetuni.k |
. . . . 5
⊢ 𝐾 = (Base‘𝑅) |
4 | | mdetuni.0g |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
5 | | mdetuni.1r |
. . . . 5
⊢ 1 =
(1r‘𝑅) |
6 | | mdetuni.pg |
. . . . 5
⊢ + =
(+g‘𝑅) |
7 | | mdetuni.tg |
. . . . 5
⊢ · =
(.r‘𝑅) |
8 | | mdetuni.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ Fin) |
9 | | mdetuni.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
10 | | mdetuni.ff |
. . . . 5
⊢ (𝜑 → 𝐷:𝐵⟶𝐾) |
11 | | mdetuni.al |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝑁 ∀𝑧 ∈ 𝑁 ((𝑦 ≠ 𝑧 ∧ ∀𝑤 ∈ 𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷‘𝑥) = 0 )) |
12 | | mdetuni.li |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = ((𝐷‘𝑦) + (𝐷‘𝑧)))) |
13 | | mdetuni.sc |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐵 ∀𝑤 ∈ 𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷‘𝑥) = (𝑦 · (𝐷‘𝑧)))) |
14 | | mdetunilem6.ph |
. . . . 5
⊢ (𝜓 → 𝜑) |
15 | | mdetunilem6.ef |
. . . . . 6
⊢ (𝜓 → (𝐸 ∈ 𝑁 ∧ 𝐹 ∈ 𝑁 ∧ 𝐸 ≠ 𝐹)) |
16 | 15 | simp1d 1140 |
. . . . 5
⊢ (𝜓 → 𝐸 ∈ 𝑁) |
17 | | mdetunilem6.gh |
. . . . . . . 8
⊢ ((𝜓 ∧ 𝑏 ∈ 𝑁) → (𝐺 ∈ 𝐾 ∧ 𝐻 ∈ 𝐾)) |
18 | 17 | simprd 500 |
. . . . . . 7
⊢ ((𝜓 ∧ 𝑏 ∈ 𝑁) → 𝐻 ∈ 𝐾) |
19 | 18 | 3adant2 1129 |
. . . . . 6
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐻 ∈ 𝐾) |
20 | 17 | simpld 499 |
. . . . . . 7
⊢ ((𝜓 ∧ 𝑏 ∈ 𝑁) → 𝐺 ∈ 𝐾) |
21 | 20 | 3adant2 1129 |
. . . . . 6
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐺 ∈ 𝐾) |
22 | | ringgrp 19371 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
23 | 14, 9, 22 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜓 → 𝑅 ∈ Grp) |
24 | 23 | adantr 485 |
. . . . . . . . 9
⊢ ((𝜓 ∧ 𝑏 ∈ 𝑁) → 𝑅 ∈ Grp) |
25 | 3, 6 | grpcl 18178 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Grp ∧ 𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾) → (𝐻 + 𝐺) ∈ 𝐾) |
26 | 24, 18, 20, 25 | syl3anc 1369 |
. . . . . . . 8
⊢ ((𝜓 ∧ 𝑏 ∈ 𝑁) → (𝐻 + 𝐺) ∈ 𝐾) |
27 | 26 | 3adant2 1129 |
. . . . . . 7
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝐻 + 𝐺) ∈ 𝐾) |
28 | | mdetunilem6.i |
. . . . . . 7
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → 𝐼 ∈ 𝐾) |
29 | 27, 28 | ifcld 4467 |
. . . . . 6
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾) |
30 | 19, 21, 29 | 3jca 1126 |
. . . . 5
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾)) |
31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 16, 30 | mdetunilem5 21317 |
. . . 4
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))))) |
32 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 26, 28 | mdetunilem2 21314 |
. . . 4
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = 0 ) |
33 | 15 | simp2d 1141 |
. . . . . . . 8
⊢ (𝜓 → 𝐹 ∈ 𝑁) |
34 | 19, 28 | ifcld 4467 |
. . . . . . . . 9
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾) |
35 | 19, 21, 34 | 3jca 1126 |
. . . . . . . 8
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾)) |
36 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 33, 35 | mdetunilem5 21317 |
. . . . . . 7
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))) |
37 | 15 | simp3d 1142 |
. . . . . . . . . . 11
⊢ (𝜓 → 𝐸 ≠ 𝐹) |
38 | 37 | necomd 3007 |
. . . . . . . . . 10
⊢ (𝜓 → 𝐹 ≠ 𝐸) |
39 | 33, 16, 38 | 3jca 1126 |
. . . . . . . . 9
⊢ (𝜓 → (𝐹 ∈ 𝑁 ∧ 𝐸 ∈ 𝑁 ∧ 𝐹 ≠ 𝐸)) |
40 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 39, 18, 28 | mdetunilem2 21314 |
. . . . . . . 8
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) = 0 ) |
41 | 40 | oveq1d 7166 |
. . . . . . 7
⊢ (𝜓 → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = ( 0 + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))) |
42 | 37 | neneqd 2957 |
. . . . . . . . . . . . . 14
⊢ (𝜓 → ¬ 𝐸 = 𝐹) |
43 | | eqtr2 2780 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 = 𝐸 ∧ 𝑎 = 𝐹) → 𝐸 = 𝐹) |
44 | 42, 43 | nsyl 142 |
. . . . . . . . . . . . 13
⊢ (𝜓 → ¬ (𝑎 = 𝐸 ∧ 𝑎 = 𝐹)) |
45 | 44 | 3ad2ant1 1131 |
. . . . . . . . . . . 12
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → ¬ (𝑎 = 𝐸 ∧ 𝑎 = 𝐹)) |
46 | | ifcomnan 4477 |
. . . . . . . . . . . 12
⊢ (¬
(𝑎 = 𝐸 ∧ 𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))) |
47 | 45, 46 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))) |
48 | 47 | mpoeq3dva 7226 |
. . . . . . . . . 10
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) |
49 | 48 | fveq2d 6663 |
. . . . . . . . 9
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) |
50 | 14, 10 | syl 17 |
. . . . . . . . . 10
⊢ (𝜓 → 𝐷:𝐵⟶𝐾) |
51 | 14, 8 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜓 → 𝑁 ∈ Fin) |
52 | 21, 28 | ifcld 4467 |
. . . . . . . . . . . 12
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐹, 𝐺, 𝐼) ∈ 𝐾) |
53 | 19, 52 | ifcld 4467 |
. . . . . . . . . . 11
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) ∈ 𝐾) |
54 | 1, 3, 2, 51, 23, 53 | matbas2d 21124 |
. . . . . . . . . 10
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) ∈ 𝐵) |
55 | 50, 54 | ffvelrnd 6844 |
. . . . . . . . 9
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾) |
56 | 49, 55 | eqeltrrd 2854 |
. . . . . . . 8
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾) |
57 | 3, 6, 4 | grplid 18201 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾) → ( 0 + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) |
58 | 23, 56, 57 | syl2anc 588 |
. . . . . . 7
⊢ (𝜓 → ( 0 + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) |
59 | 36, 41, 58 | 3eqtrd 2798 |
. . . . . 6
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) |
60 | | ifcomnan 4477 |
. . . . . . . . 9
⊢ (¬
(𝑎 = 𝐸 ∧ 𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼))) |
61 | 45, 60 | syl 17 |
. . . . . . . 8
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼))) |
62 | 61 | mpoeq3dva 7226 |
. . . . . . 7
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) |
63 | 62 | fveq2d 6663 |
. . . . . 6
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼))))) |
64 | 59, 63, 49 | 3eqtr4d 2804 |
. . . . 5
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) |
65 | 21, 28 | ifcld 4467 |
. . . . . . . . 9
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾) |
66 | 19, 21, 65 | 3jca 1126 |
. . . . . . . 8
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝐻 ∈ 𝐾 ∧ 𝐺 ∈ 𝐾 ∧ if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾)) |
67 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 33, 66 | mdetunilem5 21317 |
. . . . . . 7
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼)))))) |
68 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 39, 20, 28 | mdetunilem2 21314 |
. . . . . . . 8
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼)))) = 0 ) |
69 | 68 | oveq2d 7167 |
. . . . . . 7
⊢ (𝜓 → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼))))) = ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 )) |
70 | | ifcomnan 4477 |
. . . . . . . . . . . 12
⊢ (¬
(𝑎 = 𝐸 ∧ 𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))) |
71 | 45, 70 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))) |
72 | 71 | mpoeq3dva 7226 |
. . . . . . . . . 10
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) |
73 | 72 | fveq2d 6663 |
. . . . . . . . 9
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))))) |
74 | 19, 28 | ifcld 4467 |
. . . . . . . . . . . 12
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐹, 𝐻, 𝐼) ∈ 𝐾) |
75 | 21, 74 | ifcld 4467 |
. . . . . . . . . . 11
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) ∈ 𝐾) |
76 | 1, 3, 2, 51, 23, 75 | matbas2d 21124 |
. . . . . . . . . 10
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) ∈ 𝐵) |
77 | 50, 76 | ffvelrnd 6844 |
. . . . . . . . 9
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾) |
78 | 73, 77 | eqeltrrd 2854 |
. . . . . . . 8
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾) |
79 | 3, 6, 4 | grprid 18202 |
. . . . . . . 8
⊢ ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾) → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))))) |
80 | 23, 78, 79 | syl2anc 588 |
. . . . . . 7
⊢ (𝜓 → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))))) |
81 | 67, 69, 80 | 3eqtrd 2798 |
. . . . . 6
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))))) |
82 | | ifcomnan 4477 |
. . . . . . . . 9
⊢ (¬
(𝑎 = 𝐸 ∧ 𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼))) |
83 | 45, 82 | syl 17 |
. . . . . . . 8
⊢ ((𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼))) |
84 | 83 | mpoeq3dva 7226 |
. . . . . . 7
⊢ (𝜓 → (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) |
85 | 84 | fveq2d 6663 |
. . . . . 6
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼))))) |
86 | 81, 85, 73 | 3eqtr4d 2804 |
. . . . 5
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) |
87 | 64, 86 | oveq12d 7169 |
. . . 4
⊢ (𝜓 → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))))) = ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))))) |
88 | 31, 32, 87 | 3eqtr3rd 2803 |
. . 3
⊢ (𝜓 → ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 ) |
89 | | eqid 2759 |
. . . . 5
⊢
(invg‘𝑅) = (invg‘𝑅) |
90 | 3, 6, 4, 89 | grpinvid1 18222 |
. . . 4
⊢ ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾 ∧ (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾) → (((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 )) |
91 | 23, 55, 77, 90 | syl3anc 1369 |
. . 3
⊢ (𝜓 →
(((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 )) |
92 | 88, 91 | mpbird 260 |
. 2
⊢ (𝜓 →
((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) |
93 | 92 | eqcomd 2765 |
1
⊢ (𝜓 → (𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg‘𝑅)‘(𝐷‘(𝑎 ∈ 𝑁, 𝑏 ∈ 𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))))) |