MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetunilem6 Structured version   Visualization version   GIF version

Theorem mdetunilem6 21318
Description: Lemma for mdetuni 21323. (Contributed by SO, 15-Jul-2018.)
Hypotheses
Ref Expression
mdetuni.a 𝐴 = (𝑁 Mat 𝑅)
mdetuni.b 𝐵 = (Base‘𝐴)
mdetuni.k 𝐾 = (Base‘𝑅)
mdetuni.0g 0 = (0g𝑅)
mdetuni.1r 1 = (1r𝑅)
mdetuni.pg + = (+g𝑅)
mdetuni.tg · = (.r𝑅)
mdetuni.n (𝜑𝑁 ∈ Fin)
mdetuni.r (𝜑𝑅 ∈ Ring)
mdetuni.ff (𝜑𝐷:𝐵𝐾)
mdetuni.al (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
mdetuni.li (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
mdetuni.sc (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
mdetunilem6.ph (𝜓𝜑)
mdetunilem6.ef (𝜓 → (𝐸𝑁𝐹𝑁𝐸𝐹))
mdetunilem6.gh ((𝜓𝑏𝑁) → (𝐺𝐾𝐻𝐾))
mdetunilem6.i ((𝜓𝑎𝑁𝑏𝑁) → 𝐼𝐾)
Assertion
Ref Expression
mdetunilem6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))))
Distinct variable groups:   𝜑,𝑥,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐵,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐾,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝑁,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥,𝐷,𝑦,𝑧,𝑤,𝑎,𝑏   𝑥, · ,𝑦,𝑧,𝑤   + ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   0 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   1 ,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝑅,𝑦,𝑧,𝑤   𝐴,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝑥,𝐸,𝑦,𝑧,𝑤   𝑥,𝐹,𝑦,𝑧,𝑤   𝑥,𝐺,𝑦,𝑧,𝑤   𝑥,𝐻,𝑦,𝑧,𝑤   𝜓,𝑎,𝑏,𝑥,𝑦,𝑧,𝑤   𝐸,𝑎,𝑏   𝐹,𝑎,𝑏   𝐺,𝑎   𝐻,𝑎   𝑥,𝐼,𝑦,𝑧,𝑤
Allowed substitution hints:   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   𝐺(𝑏)   𝐻(𝑏)   𝐼(𝑎,𝑏)

Proof of Theorem mdetunilem6
StepHypRef Expression
1 mdetuni.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 mdetuni.b . . . . 5 𝐵 = (Base‘𝐴)
3 mdetuni.k . . . . 5 𝐾 = (Base‘𝑅)
4 mdetuni.0g . . . . 5 0 = (0g𝑅)
5 mdetuni.1r . . . . 5 1 = (1r𝑅)
6 mdetuni.pg . . . . 5 + = (+g𝑅)
7 mdetuni.tg . . . . 5 · = (.r𝑅)
8 mdetuni.n . . . . 5 (𝜑𝑁 ∈ Fin)
9 mdetuni.r . . . . 5 (𝜑𝑅 ∈ Ring)
10 mdetuni.ff . . . . 5 (𝜑𝐷:𝐵𝐾)
11 mdetuni.al . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝑁𝑧𝑁 ((𝑦𝑧 ∧ ∀𝑤𝑁 (𝑦𝑥𝑤) = (𝑧𝑥𝑤)) → (𝐷𝑥) = 0 ))
12 mdetuni.li . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐵𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((𝑦 ↾ ({𝑤} × 𝑁)) ∘f + (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑦 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = ((𝐷𝑦) + (𝐷𝑧))))
13 mdetuni.sc . . . . 5 (𝜑 → ∀𝑥𝐵𝑦𝐾𝑧𝐵𝑤𝑁 (((𝑥 ↾ ({𝑤} × 𝑁)) = ((({𝑤} × 𝑁) × {𝑦}) ∘f · (𝑧 ↾ ({𝑤} × 𝑁))) ∧ (𝑥 ↾ ((𝑁 ∖ {𝑤}) × 𝑁)) = (𝑧 ↾ ((𝑁 ∖ {𝑤}) × 𝑁))) → (𝐷𝑥) = (𝑦 · (𝐷𝑧))))
14 mdetunilem6.ph . . . . 5 (𝜓𝜑)
15 mdetunilem6.ef . . . . . 6 (𝜓 → (𝐸𝑁𝐹𝑁𝐸𝐹))
1615simp1d 1140 . . . . 5 (𝜓𝐸𝑁)
17 mdetunilem6.gh . . . . . . . 8 ((𝜓𝑏𝑁) → (𝐺𝐾𝐻𝐾))
1817simprd 500 . . . . . . 7 ((𝜓𝑏𝑁) → 𝐻𝐾)
19183adant2 1129 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → 𝐻𝐾)
2017simpld 499 . . . . . . 7 ((𝜓𝑏𝑁) → 𝐺𝐾)
21203adant2 1129 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → 𝐺𝐾)
22 ringgrp 19371 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2314, 9, 223syl 18 . . . . . . . . . 10 (𝜓𝑅 ∈ Grp)
2423adantr 485 . . . . . . . . 9 ((𝜓𝑏𝑁) → 𝑅 ∈ Grp)
253, 6grpcl 18178 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ 𝐻𝐾𝐺𝐾) → (𝐻 + 𝐺) ∈ 𝐾)
2624, 18, 20, 25syl3anc 1369 . . . . . . . 8 ((𝜓𝑏𝑁) → (𝐻 + 𝐺) ∈ 𝐾)
27263adant2 1129 . . . . . . 7 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻 + 𝐺) ∈ 𝐾)
28 mdetunilem6.i . . . . . . 7 ((𝜓𝑎𝑁𝑏𝑁) → 𝐼𝐾)
2927, 28ifcld 4467 . . . . . 6 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾)
3019, 21, 293jca 1126 . . . . 5 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼) ∈ 𝐾))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 30mdetunilem5 21317 . . . 4 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))))))
321, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 26, 28mdetunilem2 21314 . . . 4 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, (𝐻 + 𝐺), if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = 0 )
3315simp2d 1141 . . . . . . . 8 (𝜓𝐹𝑁)
3419, 28ifcld 4467 . . . . . . . . 9 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾)
3519, 21, 343jca 1126 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐸, 𝐻, 𝐼) ∈ 𝐾))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 35mdetunilem5 21317 . . . . . . 7 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))))
3715simp3d 1142 . . . . . . . . . . 11 (𝜓𝐸𝐹)
3837necomd 3007 . . . . . . . . . 10 (𝜓𝐹𝐸)
3933, 16, 383jca 1126 . . . . . . . . 9 (𝜓 → (𝐹𝑁𝐸𝑁𝐹𝐸))
401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 39, 18, 28mdetunilem2 21314 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) = 0 )
4140oveq1d 7166 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐻, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))))
4237neneqd 2957 . . . . . . . . . . . . . 14 (𝜓 → ¬ 𝐸 = 𝐹)
43 eqtr2 2780 . . . . . . . . . . . . . 14 ((𝑎 = 𝐸𝑎 = 𝐹) → 𝐸 = 𝐹)
4442, 43nsyl 142 . . . . . . . . . . . . 13 (𝜓 → ¬ (𝑎 = 𝐸𝑎 = 𝐹))
45443ad2ant1 1131 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → ¬ (𝑎 = 𝐸𝑎 = 𝐹))
46 ifcomnan 4477 . . . . . . . . . . . 12 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))
4745, 46syl 17 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) = if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))
4847mpoeq3dva 7226 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))
4948fveq2d 6663 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5014, 10syl 17 . . . . . . . . . 10 (𝜓𝐷:𝐵𝐾)
5114, 8syl 17 . . . . . . . . . . 11 (𝜓𝑁 ∈ Fin)
5221, 28ifcld 4467 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, 𝐺, 𝐼) ∈ 𝐾)
5319, 52ifcld 4467 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)) ∈ 𝐾)
541, 3, 2, 51, 23, 53matbas2d 21124 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))) ∈ 𝐵)
5550, 54ffvelrnd 6844 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾)
5649, 55eqeltrrd 2854 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾)
573, 6, 4grplid 18201 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))) ∈ 𝐾) → ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5823, 56, 57syl2anc 588 . . . . . . 7 (𝜓 → ( 0 + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
5936, 41, 583eqtrd 2798 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐻, 𝐼)))))
60 ifcomnan 4477 . . . . . . . . 9 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))
6145, 60syl 17 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))
6261mpoeq3dva 7226 . . . . . . 7 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼))))
6362fveq2d 6663 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐻, 𝐼)))))
6459, 63, 493eqtr4d 2804 . . . . 5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))))
6521, 28ifcld 4467 . . . . . . . . 9 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾)
6619, 21, 653jca 1126 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → (𝐻𝐾𝐺𝐾 ∧ if(𝑎 = 𝐸, 𝐺, 𝐼) ∈ 𝐾))
671, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 33, 66mdetunilem5 21317 . . . . . . 7 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼))))))
681, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 39, 20, 28mdetunilem2 21314 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼)))) = 0 )
6968oveq2d 7167 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐺, if(𝑎 = 𝐸, 𝐺, 𝐼))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ))
70 ifcomnan 4477 . . . . . . . . . . . 12 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))
7145, 70syl 17 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) = if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))
7271mpoeq3dva 7226 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼))))
7372fveq2d 6663 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
7419, 28ifcld 4467 . . . . . . . . . . . 12 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐹, 𝐻, 𝐼) ∈ 𝐾)
7521, 74ifcld 4467 . . . . . . . . . . 11 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)) ∈ 𝐾)
761, 3, 2, 51, 23, 75matbas2d 21124 . . . . . . . . . 10 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))) ∈ 𝐵)
7750, 76ffvelrnd 6844 . . . . . . . . 9 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾)
7873, 77eqeltrrd 2854 . . . . . . . 8 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾)
793, 6, 4grprid 18202 . . . . . . . 8 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) ∈ 𝐾) → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8023, 78, 79syl2anc 588 . . . . . . 7 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))) + 0 ) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8167, 69, 803eqtrd 2798 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, 𝐻, if(𝑎 = 𝐸, 𝐺, 𝐼)))))
82 ifcomnan 4477 . . . . . . . . 9 (¬ (𝑎 = 𝐸𝑎 = 𝐹) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))
8345, 82syl 17 . . . . . . . 8 ((𝜓𝑎𝑁𝑏𝑁) → if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)) = if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))
8483mpoeq3dva 7226 . . . . . . 7 (𝜓 → (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))) = (𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼))))
8584fveq2d 6663 . . . . . 6 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐹, (𝐻 + 𝐺), if(𝑎 = 𝐸, 𝐺, 𝐼)))))
8681, 85, 733eqtr4d 2804 . . . . 5 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))))
8764, 86oveq12d 7169 . . . 4 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, (𝐻 + 𝐺), 𝐼))))) = ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))))
8831, 32, 873eqtr3rd 2803 . . 3 (𝜓 → ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 )
89 eqid 2759 . . . . 5 (invg𝑅) = (invg𝑅)
903, 6, 4, 89grpinvid1 18222 . . . 4 ((𝑅 ∈ Grp ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) ∈ 𝐾 ∧ (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ∈ 𝐾) → (((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 ))
9123, 55, 77, 90syl3anc 1369 . . 3 (𝜓 → (((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) ↔ ((𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼)))) + (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼))))) = 0 ))
9288, 91mpbird 260 . 2 (𝜓 → ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))) = (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))))
9392eqcomd 2765 1 (𝜓 → (𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐺, if(𝑎 = 𝐹, 𝐻, 𝐼)))) = ((invg𝑅)‘(𝐷‘(𝑎𝑁, 𝑏𝑁 ↦ if(𝑎 = 𝐸, 𝐻, if(𝑎 = 𝐹, 𝐺, 𝐼))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  cdif 3856  ifcif 4421  {csn 4523   × cxp 5523  cres 5527  wf 6332  cfv 6336  (class class class)co 7151  cmpo 7153  f cof 7404  Fincfn 8528  Basecbs 16542  +gcplusg 16624  .rcmulr 16625  0gc0g 16772  Grpcgrp 18170  invgcminusg 18171  1rcur 19320  Ringcrg 19366   Mat cmat 21108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-ot 4532  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-er 8300  df-map 8419  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-sup 8940  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-dec 12139  df-uz 12284  df-fz 12941  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-hom 16648  df-cco 16649  df-0g 16774  df-prds 16780  df-pws 16782  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-grp 18173  df-minusg 18174  df-ring 19368  df-sra 20013  df-rgmod 20014  df-dsmm 20498  df-frlm 20513  df-mat 21109
This theorem is referenced by:  mdetunilem7  21319
  Copyright terms: Public domain W3C validator