| Step | Hyp | Ref
| Expression |
| 1 | | csbeq1 3882 |
. . . 4
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = ⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶)) |
| 2 | | dfsbcq2 3773 |
. . . . 5
⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
| 3 | | csbeq1 3882 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
| 4 | | csbeq1 3882 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
| 5 | 2, 3, 4 | ifbieq12d 4534 |
. . . 4
⊢ (𝑦 = 𝐴 → if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶)) |
| 6 | 1, 5 | eqeq12d 2752 |
. . 3
⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶))) |
| 7 | | vex 3468 |
. . . 4
⊢ 𝑦 ∈ V |
| 8 | | nfs1v 2157 |
. . . . 5
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
| 9 | | nfcsb1v 3903 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
| 10 | | nfcsb1v 3903 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
| 11 | 8, 9, 10 | nfif 4536 |
. . . 4
⊢
Ⅎ𝑥if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶) |
| 12 | | sbequ12 2252 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
| 13 | | csbeq1a 3893 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
| 14 | | csbeq1a 3893 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
| 15 | 12, 13, 14 | ifbieq12d 4534 |
. . . 4
⊢ (𝑥 = 𝑦 → if(𝜑, 𝐵, 𝐶) = if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶)) |
| 16 | 7, 11, 15 | csbief 3913 |
. . 3
⊢
⦋𝑦 /
𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶) |
| 17 | 6, 16 | vtoclg 3538 |
. 2
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶)) |
| 18 | | csbprc 4389 |
. . 3
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = ∅) |
| 19 | | csbprc 4389 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐵 = ∅) |
| 20 | | csbprc 4389 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐶 = ∅) |
| 21 | 19, 20 | ifeq12d 4527 |
. . . 4
⊢ (¬
𝐴 ∈ V →
if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶) = if([𝐴 / 𝑥]𝜑, ∅, ∅)) |
| 22 | | ifid 4546 |
. . . 4
⊢
if([𝐴 / 𝑥]𝜑, ∅, ∅) =
∅ |
| 23 | 21, 22 | eqtr2di 2788 |
. . 3
⊢ (¬
𝐴 ∈ V → ∅ =
if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶)) |
| 24 | 18, 23 | eqtrd 2771 |
. 2
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶)) |
| 25 | 17, 24 | pm2.61i 182 |
1
⊢
⦋𝐴 /
𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶) |