MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbif Structured version   Visualization version   GIF version

Theorem csbif 4496
Description: Distribute proper substitution through the conditional operator. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 19-Aug-2018.)
Assertion
Ref Expression
csbif 𝐴 / 𝑥if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, 𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶)

Proof of Theorem csbif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 csbeq1 3814 . . . 4 (𝑦 = 𝐴𝑦 / 𝑥if(𝜑, 𝐵, 𝐶) = 𝐴 / 𝑥if(𝜑, 𝐵, 𝐶))
2 dfsbcq2 3697 . . . . 5 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
3 csbeq1 3814 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐵 = 𝐴 / 𝑥𝐵)
4 csbeq1 3814 . . . . 5 (𝑦 = 𝐴𝑦 / 𝑥𝐶 = 𝐴 / 𝑥𝐶)
52, 3, 4ifbieq12d 4467 . . . 4 (𝑦 = 𝐴 → if([𝑦 / 𝑥]𝜑, 𝑦 / 𝑥𝐵, 𝑦 / 𝑥𝐶) = if([𝐴 / 𝑥]𝜑, 𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶))
61, 5eqeq12d 2753 . . 3 (𝑦 = 𝐴 → (𝑦 / 𝑥if(𝜑, 𝐵, 𝐶) = if([𝑦 / 𝑥]𝜑, 𝑦 / 𝑥𝐵, 𝑦 / 𝑥𝐶) ↔ 𝐴 / 𝑥if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, 𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶)))
7 vex 3412 . . . 4 𝑦 ∈ V
8 nfs1v 2157 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
9 nfcsb1v 3836 . . . . 5 𝑥𝑦 / 𝑥𝐵
10 nfcsb1v 3836 . . . . 5 𝑥𝑦 / 𝑥𝐶
118, 9, 10nfif 4469 . . . 4 𝑥if([𝑦 / 𝑥]𝜑, 𝑦 / 𝑥𝐵, 𝑦 / 𝑥𝐶)
12 sbequ12 2249 . . . . 5 (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑))
13 csbeq1a 3825 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
14 csbeq1a 3825 . . . . 5 (𝑥 = 𝑦𝐶 = 𝑦 / 𝑥𝐶)
1512, 13, 14ifbieq12d 4467 . . . 4 (𝑥 = 𝑦 → if(𝜑, 𝐵, 𝐶) = if([𝑦 / 𝑥]𝜑, 𝑦 / 𝑥𝐵, 𝑦 / 𝑥𝐶))
167, 11, 15csbief 3846 . . 3 𝑦 / 𝑥if(𝜑, 𝐵, 𝐶) = if([𝑦 / 𝑥]𝜑, 𝑦 / 𝑥𝐵, 𝑦 / 𝑥𝐶)
176, 16vtoclg 3481 . 2 (𝐴 ∈ V → 𝐴 / 𝑥if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, 𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶))
18 csbprc 4321 . . 3 𝐴 ∈ V → 𝐴 / 𝑥if(𝜑, 𝐵, 𝐶) = ∅)
19 csbprc 4321 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐵 = ∅)
20 csbprc 4321 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
2119, 20ifeq12d 4460 . . . 4 𝐴 ∈ V → if([𝐴 / 𝑥]𝜑, 𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶) = if([𝐴 / 𝑥]𝜑, ∅, ∅))
22 ifid 4479 . . . 4 if([𝐴 / 𝑥]𝜑, ∅, ∅) = ∅
2321, 22eqtr2di 2795 . . 3 𝐴 ∈ V → ∅ = if([𝐴 / 𝑥]𝜑, 𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶))
2418, 23eqtrd 2777 . 2 𝐴 ∈ V → 𝐴 / 𝑥if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, 𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶))
2517, 24pm2.61i 185 1 𝐴 / 𝑥if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, 𝐴 / 𝑥𝐵, 𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1543  [wsb 2070  wcel 2110  Vcvv 3408  [wsbc 3694  csb 3811  c0 4237  ifcif 4439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-nul 4238  df-if 4440
This theorem is referenced by:  csbopg  4802  fvmptnn04if  21746  csbrdgg  35237  csbfinxpg  35296  cdlemk40  38668
  Copyright terms: Public domain W3C validator