Step | Hyp | Ref
| Expression |
1 | | csbeq1 3814 |
. . . 4
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = ⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶)) |
2 | | dfsbcq2 3697 |
. . . . 5
⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) |
3 | | csbeq1 3814 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐵) |
4 | | csbeq1 3814 |
. . . . 5
⊢ (𝑦 = 𝐴 → ⦋𝑦 / 𝑥⦌𝐶 = ⦋𝐴 / 𝑥⦌𝐶) |
5 | 2, 3, 4 | ifbieq12d 4467 |
. . . 4
⊢ (𝑦 = 𝐴 → if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶)) |
6 | 1, 5 | eqeq12d 2753 |
. . 3
⊢ (𝑦 = 𝐴 → (⦋𝑦 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶) ↔ ⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶))) |
7 | | vex 3412 |
. . . 4
⊢ 𝑦 ∈ V |
8 | | nfs1v 2157 |
. . . . 5
⊢
Ⅎ𝑥[𝑦 / 𝑥]𝜑 |
9 | | nfcsb1v 3836 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 |
10 | | nfcsb1v 3836 |
. . . . 5
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
11 | 8, 9, 10 | nfif 4469 |
. . . 4
⊢
Ⅎ𝑥if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶) |
12 | | sbequ12 2249 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) |
13 | | csbeq1a 3825 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) |
14 | | csbeq1a 3825 |
. . . . 5
⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
15 | 12, 13, 14 | ifbieq12d 4467 |
. . . 4
⊢ (𝑥 = 𝑦 → if(𝜑, 𝐵, 𝐶) = if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶)) |
16 | 7, 11, 15 | csbief 3846 |
. . 3
⊢
⦋𝑦 /
𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝑦 / 𝑥]𝜑, ⦋𝑦 / 𝑥⦌𝐵, ⦋𝑦 / 𝑥⦌𝐶) |
17 | 6, 16 | vtoclg 3481 |
. 2
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶)) |
18 | | csbprc 4321 |
. . 3
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = ∅) |
19 | | csbprc 4321 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐵 = ∅) |
20 | | csbprc 4321 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐶 = ∅) |
21 | 19, 20 | ifeq12d 4460 |
. . . 4
⊢ (¬
𝐴 ∈ V →
if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶) = if([𝐴 / 𝑥]𝜑, ∅, ∅)) |
22 | | ifid 4479 |
. . . 4
⊢
if([𝐴 / 𝑥]𝜑, ∅, ∅) =
∅ |
23 | 21, 22 | eqtr2di 2795 |
. . 3
⊢ (¬
𝐴 ∈ V → ∅ =
if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶)) |
24 | 18, 23 | eqtrd 2777 |
. 2
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶)) |
25 | 17, 24 | pm2.61i 185 |
1
⊢
⦋𝐴 /
𝑥⦌if(𝜑, 𝐵, 𝐶) = if([𝐴 / 𝑥]𝜑, ⦋𝐴 / 𝑥⦌𝐵, ⦋𝐴 / 𝑥⦌𝐶) |