Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq2 4461 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-un 3888 df-if 4457 |
This theorem is referenced by: ifeq12d 4477 ifbieq2d 4482 ifeq2da 4488 ifcomnan 4512 rdgeq1 8213 cantnflem1d 9376 cantnflem1 9377 rexmul 12934 1arithlem4 16555 ramcl 16658 mplcoe1 21148 mplcoe5 21151 subrgascl 21184 selvffval 21236 selvval 21238 scmatscm 21570 marrepfval 21617 ma1repveval 21628 mulmarep1el 21629 mdetralt2 21666 mdetunilem8 21676 maduval 21695 maducoeval2 21697 madurid 21701 minmar1val0 21704 monmatcollpw 21836 pmatcollpwscmatlem1 21846 monmat2matmon 21881 itg2monolem1 24820 iblmulc2 24900 itgmulc2lem1 24901 bddmulibl 24908 dvtaylp 25434 dchrinvcl 26306 rpvmasum2 26565 padicfval 26669 plymulx 32427 itg2addnclem 35755 itg2addnclem3 35757 itg2addnc 35758 itgmulc2nclem1 35770 hdmap1fval 39737 itgioocnicc 43408 etransclem14 43679 etransclem17 43682 etransclem21 43686 etransclem25 43690 etransclem28 43693 etransclem31 43696 hsphoif 44004 hoidmvval 44005 hsphoival 44007 hoidmvlelem5 44027 hoidmvle 44028 ovnhoi 44031 hspmbllem2 44055 |
Copyright terms: Public domain | W3C validator |