![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq2 4534 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ifcif 4529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-un 3954 df-if 4530 |
This theorem is referenced by: ifeq12d 4550 ifbieq2d 4555 ifeq2da 4561 ifcomnan 4585 rdgeq1 8411 cantnflem1d 9683 cantnflem1 9684 rexmul 13250 1arithlem4 16859 ramcl 16962 mplcoe1 21592 mplcoe5 21595 subrgascl 21627 selvffval 21679 selvval 21681 scmatscm 22015 marrepfval 22062 ma1repveval 22073 mulmarep1el 22074 mdetralt2 22111 mdetunilem8 22121 maduval 22140 maducoeval2 22142 madurid 22146 minmar1val0 22149 monmatcollpw 22281 pmatcollpwscmatlem1 22291 monmat2matmon 22326 itg2monolem1 25268 iblmulc2 25348 itgmulc2lem1 25349 bddmulibl 25356 dvtaylp 25882 dchrinvcl 26756 rpvmasum2 27015 padicfval 27119 plymulx 33590 itg2addnclem 36587 itg2addnclem3 36589 itg2addnc 36590 itgmulc2nclem1 36602 hdmap1fval 40715 cantnfresb 42122 itgioocnicc 44741 etransclem14 45012 etransclem17 45015 etransclem21 45019 etransclem25 45023 etransclem28 45026 etransclem31 45029 hsphoif 45340 hoidmvval 45341 hsphoival 45343 hoidmvlelem5 45363 hoidmvle 45364 ovnhoi 45367 hspmbllem2 45391 |
Copyright terms: Public domain | W3C validator |