| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq2 4489 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-un 3916 df-if 4485 |
| This theorem is referenced by: ifeq12d 4506 ifbieq2d 4511 ifeq2da 4517 ifcomnan 4541 rdgeq1 8356 cantnflem1d 9617 cantnflem1 9618 rexmul 13207 1arithlem4 16873 ramcl 16976 mplcoe1 21920 mplcoe5 21923 subrgascl 21949 selvffval 21996 selvval 21998 scmatscm 22376 marrepfval 22423 ma1repveval 22434 mulmarep1el 22435 mdetralt2 22472 mdetunilem8 22482 maduval 22501 maducoeval2 22503 madurid 22507 minmar1val0 22510 monmatcollpw 22642 pmatcollpwscmatlem1 22652 monmat2matmon 22687 itg2monolem1 25627 iblmulc2 25708 itgmulc2lem1 25709 bddmulibl 25716 dvtaylp 26254 dchrinvcl 27140 rpvmasum2 27399 padicfval 27503 expsval 28287 plymulx 34512 itg2addnclem 37638 itg2addnclem3 37640 itg2addnc 37641 itgmulc2nclem1 37653 hdmap1fval 41763 cantnfresb 43286 itgioocnicc 45948 etransclem14 46219 etransclem17 46222 etransclem21 46226 etransclem25 46230 etransclem28 46233 etransclem31 46236 hsphoif 46547 hoidmvval 46548 hsphoival 46550 hoidmvlelem5 46570 hoidmvle 46571 ovnhoi 46574 hspmbllem2 46598 |
| Copyright terms: Public domain | W3C validator |