Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq2 4429 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-12 2176 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-rab 3080 df-v 3412 df-un 3866 df-if 4425 |
This theorem is referenced by: ifeq12d 4445 ifbieq2d 4450 ifeq2da 4456 ifcomnan 4480 rdgeq1 8064 cantnflem1d 9198 cantnflem1 9199 rexmul 12719 1arithlem4 16332 ramcl 16435 mplcoe1 20812 mplcoe5 20815 subrgascl 20842 selvffval 20894 selvval 20896 scmatscm 21228 marrepfval 21275 ma1repveval 21286 mulmarep1el 21287 mdetralt2 21324 mdetunilem8 21334 maduval 21353 maducoeval2 21355 madurid 21359 minmar1val0 21362 monmatcollpw 21494 pmatcollpwscmatlem1 21504 monmat2matmon 21539 itg2monolem1 24465 iblmulc2 24545 itgmulc2lem1 24546 bddmulibl 24553 dvtaylp 25079 dchrinvcl 25951 rpvmasum2 26210 padicfval 26314 plymulx 32060 itg2addnclem 35424 itg2addnclem3 35426 itg2addnc 35427 itgmulc2nclem1 35439 hdmap1fval 39408 itgioocnicc 43031 etransclem14 43302 etransclem17 43305 etransclem21 43309 etransclem25 43313 etransclem28 43316 etransclem31 43319 hsphoif 43627 hoidmvval 43628 hsphoival 43630 hoidmvlelem5 43650 hoidmvle 43651 ovnhoi 43654 hspmbllem2 43678 |
Copyright terms: Public domain | W3C validator |