| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq2 4493 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-un 3919 df-if 4489 |
| This theorem is referenced by: ifeq12d 4510 ifbieq2d 4515 ifeq2da 4521 ifcomnan 4545 rdgeq1 8379 cantnflem1d 9641 cantnflem1 9642 rexmul 13231 1arithlem4 16897 ramcl 17000 mplcoe1 21944 mplcoe5 21947 subrgascl 21973 selvffval 22020 selvval 22022 scmatscm 22400 marrepfval 22447 ma1repveval 22458 mulmarep1el 22459 mdetralt2 22496 mdetunilem8 22506 maduval 22525 maducoeval2 22527 madurid 22531 minmar1val0 22534 monmatcollpw 22666 pmatcollpwscmatlem1 22676 monmat2matmon 22711 itg2monolem1 25651 iblmulc2 25732 itgmulc2lem1 25733 bddmulibl 25740 dvtaylp 26278 dchrinvcl 27164 rpvmasum2 27423 padicfval 27527 expsval 28311 plymulx 34539 itg2addnclem 37665 itg2addnclem3 37667 itg2addnc 37668 itgmulc2nclem1 37680 hdmap1fval 41790 cantnfresb 43313 itgioocnicc 45975 etransclem14 46246 etransclem17 46249 etransclem21 46253 etransclem25 46257 etransclem28 46260 etransclem31 46263 hsphoif 46574 hoidmvval 46575 hsphoival 46577 hoidmvlelem5 46597 hoidmvle 46598 ovnhoi 46601 hspmbllem2 46625 |
| Copyright terms: Public domain | W3C validator |