| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq2 4481 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-un 3908 df-if 4477 |
| This theorem is referenced by: ifeq12d 4498 ifbieq2d 4503 ifeq2da 4509 ifcomnan 4533 rdgeq1 8333 cantnflem1d 9584 cantnflem1 9585 rexmul 13173 1arithlem4 16838 ramcl 16941 mplcoe1 21942 mplcoe5 21945 subrgascl 21971 selvffval 22018 selvval 22020 scmatscm 22398 marrepfval 22445 ma1repveval 22456 mulmarep1el 22457 mdetralt2 22494 mdetunilem8 22504 maduval 22523 maducoeval2 22525 madurid 22529 minmar1val0 22532 monmatcollpw 22664 pmatcollpwscmatlem1 22674 monmat2matmon 22709 itg2monolem1 25649 iblmulc2 25730 itgmulc2lem1 25731 bddmulibl 25738 dvtaylp 26276 dchrinvcl 27162 rpvmasum2 27421 padicfval 27525 expsval 28317 plymulx 34516 itg2addnclem 37651 itg2addnclem3 37653 itg2addnc 37654 itgmulc2nclem1 37666 hdmap1fval 41775 cantnfresb 43297 itgioocnicc 45958 etransclem14 46229 etransclem17 46232 etransclem21 46236 etransclem25 46240 etransclem28 46243 etransclem31 46246 hsphoif 46557 hoidmvval 46558 hsphoival 46560 hoidmvlelem5 46580 hoidmvle 46581 ovnhoi 46584 hspmbllem2 46608 |
| Copyright terms: Public domain | W3C validator |