| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq2 4475 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ifcif 4470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-un 3902 df-if 4471 |
| This theorem is referenced by: ifeq12d 4492 ifbieq2d 4497 ifeq2da 4503 ifcomnan 4527 rdgeq1 8325 cantnflem1d 9573 cantnflem1 9574 rexmul 13165 1arithlem4 16833 ramcl 16936 mplcoe1 21967 mplcoe5 21970 subrgascl 21996 selvffval 22043 selvval 22045 scmatscm 22423 marrepfval 22470 ma1repveval 22481 mulmarep1el 22482 mdetralt2 22519 mdetunilem8 22529 maduval 22548 maducoeval2 22550 madurid 22554 minmar1val0 22557 monmatcollpw 22689 pmatcollpwscmatlem1 22699 monmat2matmon 22734 itg2monolem1 25673 iblmulc2 25754 itgmulc2lem1 25755 bddmulibl 25762 dvtaylp 26300 dchrinvcl 27186 rpvmasum2 27445 padicfval 27549 expsval 28343 plymulx 34553 itg2addnclem 37711 itg2addnclem3 37713 itg2addnc 37714 itgmulc2nclem1 37726 hdmap1fval 41835 cantnfresb 43357 itgioocnicc 46015 etransclem14 46286 etransclem17 46289 etransclem21 46293 etransclem25 46297 etransclem28 46300 etransclem31 46303 hsphoif 46614 hoidmvval 46615 hsphoival 46617 hoidmvlelem5 46637 hoidmvle 46638 ovnhoi 46641 hspmbllem2 46665 |
| Copyright terms: Public domain | W3C validator |