Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq2 4464 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ifcif 4459 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-un 3892 df-if 4460 |
This theorem is referenced by: ifeq12d 4480 ifbieq2d 4485 ifeq2da 4491 ifcomnan 4515 rdgeq1 8242 cantnflem1d 9446 cantnflem1 9447 rexmul 13005 1arithlem4 16627 ramcl 16730 mplcoe1 21238 mplcoe5 21241 subrgascl 21274 selvffval 21326 selvval 21328 scmatscm 21662 marrepfval 21709 ma1repveval 21720 mulmarep1el 21721 mdetralt2 21758 mdetunilem8 21768 maduval 21787 maducoeval2 21789 madurid 21793 minmar1val0 21796 monmatcollpw 21928 pmatcollpwscmatlem1 21938 monmat2matmon 21973 itg2monolem1 24915 iblmulc2 24995 itgmulc2lem1 24996 bddmulibl 25003 dvtaylp 25529 dchrinvcl 26401 rpvmasum2 26660 padicfval 26764 plymulx 32527 itg2addnclem 35828 itg2addnclem3 35830 itg2addnc 35831 itgmulc2nclem1 35843 hdmap1fval 39810 itgioocnicc 43518 etransclem14 43789 etransclem17 43792 etransclem21 43796 etransclem25 43800 etransclem28 43803 etransclem31 43806 hsphoif 44114 hoidmvval 44115 hsphoival 44117 hoidmvlelem5 44137 hoidmvle 44138 ovnhoi 44141 hspmbllem2 44165 |
Copyright terms: Public domain | W3C validator |