| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq2 4510 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ifcif 4505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-un 3936 df-if 4506 |
| This theorem is referenced by: ifeq12d 4527 ifbieq2d 4532 ifeq2da 4538 ifcomnan 4562 rdgeq1 8430 cantnflem1d 9707 cantnflem1 9708 rexmul 13292 1arithlem4 16951 ramcl 17054 mplcoe1 22000 mplcoe5 22003 subrgascl 22029 selvffval 22076 selvval 22078 scmatscm 22456 marrepfval 22503 ma1repveval 22514 mulmarep1el 22515 mdetralt2 22552 mdetunilem8 22562 maduval 22581 maducoeval2 22583 madurid 22587 minmar1val0 22590 monmatcollpw 22722 pmatcollpwscmatlem1 22732 monmat2matmon 22767 itg2monolem1 25708 iblmulc2 25789 itgmulc2lem1 25790 bddmulibl 25797 dvtaylp 26335 dchrinvcl 27221 rpvmasum2 27480 padicfval 27584 expsval 28368 plymulx 34585 itg2addnclem 37700 itg2addnclem3 37702 itg2addnc 37703 itgmulc2nclem1 37715 hdmap1fval 41820 cantnfresb 43323 itgioocnicc 45986 etransclem14 46257 etransclem17 46260 etransclem21 46264 etransclem25 46268 etransclem28 46271 etransclem31 46274 hsphoif 46585 hoidmvval 46586 hsphoival 46588 hoidmvlelem5 46608 hoidmvle 46609 ovnhoi 46612 hspmbllem2 46636 |
| Copyright terms: Public domain | W3C validator |