| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
| Ref | Expression |
|---|---|
| ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | ifeq2 4529 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ifcif 4524 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-v 3481 df-un 3955 df-if 4525 |
| This theorem is referenced by: ifeq12d 4546 ifbieq2d 4551 ifeq2da 4557 ifcomnan 4581 rdgeq1 8452 cantnflem1d 9729 cantnflem1 9730 rexmul 13314 1arithlem4 16965 ramcl 17068 mplcoe1 22056 mplcoe5 22059 subrgascl 22091 selvffval 22138 selvval 22140 scmatscm 22520 marrepfval 22567 ma1repveval 22578 mulmarep1el 22579 mdetralt2 22616 mdetunilem8 22626 maduval 22645 maducoeval2 22647 madurid 22651 minmar1val0 22654 monmatcollpw 22786 pmatcollpwscmatlem1 22796 monmat2matmon 22831 itg2monolem1 25786 iblmulc2 25867 itgmulc2lem1 25868 bddmulibl 25875 dvtaylp 26413 dchrinvcl 27298 rpvmasum2 27557 padicfval 27661 expsval 28409 plymulx 34564 itg2addnclem 37679 itg2addnclem3 37681 itg2addnc 37682 itgmulc2nclem1 37694 hdmap1fval 41799 cantnfresb 43342 itgioocnicc 45997 etransclem14 46268 etransclem17 46271 etransclem21 46275 etransclem25 46279 etransclem28 46282 etransclem31 46285 hsphoif 46596 hoidmvval 46597 hsphoival 46599 hoidmvlelem5 46619 hoidmvle 46620 ovnhoi 46623 hspmbllem2 46647 |
| Copyright terms: Public domain | W3C validator |