![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq2 4553 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-un 3981 df-if 4549 |
This theorem is referenced by: ifeq12d 4569 ifbieq2d 4574 ifeq2da 4580 ifcomnan 4604 rdgeq1 8467 cantnflem1d 9757 cantnflem1 9758 rexmul 13333 1arithlem4 16973 ramcl 17076 mplcoe1 22078 mplcoe5 22081 subrgascl 22113 selvffval 22160 selvval 22162 scmatscm 22540 marrepfval 22587 ma1repveval 22598 mulmarep1el 22599 mdetralt2 22636 mdetunilem8 22646 maduval 22665 maducoeval2 22667 madurid 22671 minmar1val0 22674 monmatcollpw 22806 pmatcollpwscmatlem1 22816 monmat2matmon 22851 itg2monolem1 25805 iblmulc2 25886 itgmulc2lem1 25887 bddmulibl 25894 dvtaylp 26430 dchrinvcl 27315 rpvmasum2 27574 padicfval 27678 expsval 28426 plymulx 34525 itg2addnclem 37631 itg2addnclem3 37633 itg2addnc 37634 itgmulc2nclem1 37646 hdmap1fval 41753 cantnfresb 43286 itgioocnicc 45898 etransclem14 46169 etransclem17 46172 etransclem21 46176 etransclem25 46180 etransclem28 46183 etransclem31 46186 hsphoif 46497 hoidmvval 46498 hsphoival 46500 hoidmvlelem5 46520 hoidmvle 46521 ovnhoi 46524 hspmbllem2 46548 |
Copyright terms: Public domain | W3C validator |