![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq2d | Structured version Visualization version GIF version |
Description: Equality deduction for conditional operator. (Contributed by NM, 16-Feb-2005.) |
Ref | Expression |
---|---|
ifeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
ifeq2d | ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | ifeq2 4536 | . 2 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ifcif 4531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-un 3968 df-if 4532 |
This theorem is referenced by: ifeq12d 4552 ifbieq2d 4557 ifeq2da 4563 ifcomnan 4587 rdgeq1 8450 cantnflem1d 9726 cantnflem1 9727 rexmul 13310 1arithlem4 16960 ramcl 17063 mplcoe1 22073 mplcoe5 22076 subrgascl 22108 selvffval 22155 selvval 22157 scmatscm 22535 marrepfval 22582 ma1repveval 22593 mulmarep1el 22594 mdetralt2 22631 mdetunilem8 22641 maduval 22660 maducoeval2 22662 madurid 22666 minmar1val0 22669 monmatcollpw 22801 pmatcollpwscmatlem1 22811 monmat2matmon 22846 itg2monolem1 25800 iblmulc2 25881 itgmulc2lem1 25882 bddmulibl 25889 dvtaylp 26427 dchrinvcl 27312 rpvmasum2 27571 padicfval 27675 expsval 28423 plymulx 34542 itg2addnclem 37658 itg2addnclem3 37660 itg2addnc 37661 itgmulc2nclem1 37673 hdmap1fval 41779 cantnfresb 43314 itgioocnicc 45933 etransclem14 46204 etransclem17 46207 etransclem21 46211 etransclem25 46215 etransclem28 46218 etransclem31 46221 hsphoif 46532 hoidmvval 46533 hsphoival 46535 hoidmvlelem5 46555 hoidmvle 46556 ovnhoi 46559 hspmbllem2 46583 |
Copyright terms: Public domain | W3C validator |