MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeqor Structured version   Visualization version   GIF version

Theorem ifeqor 4587
Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ifeqor (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)

Proof of Theorem ifeqor
StepHypRef Expression
1 iftrue 4542 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21con3i 154 . . 3 (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → ¬ 𝜑)
32iffalsed 4547 . 2 (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → if(𝜑, 𝐴, 𝐵) = 𝐵)
43orri 860 1 (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 845   = wceq 1534  ifcif 4536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2102  ax-9 2110  ax-ext 2700
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-ex 1775  df-sb 2062  df-clab 2707  df-cleq 2721  df-clel 2806  df-if 4537
This theorem is referenced by:  ifpr  4703  rabrsn  4736  prmolefac  17069  muval2  27185  abssor  28264  finxpreclem2  37144  relexpxpmin  43455
  Copyright terms: Public domain W3C validator