![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeqor | Structured version Visualization version GIF version |
Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ifeqor | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4534 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | con3i 154 | . . 3 ⊢ (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → ¬ 𝜑) |
3 | 2 | iffalsed 4539 | . 2 ⊢ (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
4 | 3 | orri 860 | 1 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 845 = wceq 1541 ifcif 4528 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-if 4529 |
This theorem is referenced by: ifpr 4695 rabrsn 4728 prmolefac 16978 muval2 26635 finxpreclem2 36266 relexpxpmin 42458 |
Copyright terms: Public domain | W3C validator |