![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeqor | Structured version Visualization version GIF version |
Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
ifeqor | ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4283 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | con3i 152 | . . 3 ⊢ (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → ¬ 𝜑) |
3 | 2 | iffalsed 4288 | . 2 ⊢ (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → if(𝜑, 𝐴, 𝐵) = 𝐵) |
4 | 3 | orri 889 | 1 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∨ wo 874 = wceq 1653 ifcif 4277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-if 4278 |
This theorem is referenced by: ifpr 4423 rabrsn 4448 prmolefac 16083 muval2 25212 finxpreclem2 33725 relexpxpmin 38792 |
Copyright terms: Public domain | W3C validator |