Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeqor Structured version   Visualization version   GIF version

Theorem ifeqor 4519
 Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ifeqor (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)

Proof of Theorem ifeqor
StepHypRef Expression
1 iftrue 4476 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21con3i 157 . . 3 (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → ¬ 𝜑)
32iffalsed 4481 . 2 (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → if(𝜑, 𝐴, 𝐵) = 𝐵)
43orri 858 1 (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ∨ wo 843   = wceq 1530  ifcif 4470 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ex 1774  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-if 4471 This theorem is referenced by:  ifpr  4628  rabrsn  4659  prmolefac  16372  muval2  25625  finxpreclem2  34540  relexpxpmin  39927
 Copyright terms: Public domain W3C validator