MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeqor Structured version   Visualization version   GIF version

Theorem ifeqor 4579
Description: The possible values of a conditional operator. (Contributed by NM, 17-Jun-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
ifeqor (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)

Proof of Theorem ifeqor
StepHypRef Expression
1 iftrue 4534 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
21con3i 154 . . 3 (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → ¬ 𝜑)
32iffalsed 4539 . 2 (¬ if(𝜑, 𝐴, 𝐵) = 𝐴 → if(𝜑, 𝐴, 𝐵) = 𝐵)
43orri 860 1 (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 845   = wceq 1541  ifcif 4528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-if 4529
This theorem is referenced by:  ifpr  4695  rabrsn  4728  prmolefac  16978  muval2  26635  finxpreclem2  36266  relexpxpmin  42458
  Copyright terms: Public domain W3C validator