MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabrsn Structured version   Visualization version   GIF version

Theorem rabrsn 4690
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Proof shortened by AV, 21-Jul-2019.)
Assertion
Ref Expression
rabrsn (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥)

Proof of Theorem rabrsn
StepHypRef Expression
1 rabsnifsb 4688 . . 3 {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)
21eqeq2i 2750 . 2 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅))
3 ifeqor 4542 . . . 4 (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅)
4 orcom 869 . . . 4 ((if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}))
53, 4mpbi 229 . . 3 (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})
6 eqeq1 2741 . . . 4 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅))
7 eqeq1 2741 . . . 4 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = {𝐴} ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}))
86, 7orbi12d 918 . . 3 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → ((𝑀 = ∅ ∨ 𝑀 = {𝐴}) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})))
95, 8mpbiri 258 . 2 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
102, 9sylbi 216 1 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 846   = wceq 1542  {crab 3410  [wsbc 3744  c0 4287  ifcif 4491  {csn 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-rab 3411  df-sbc 3745  df-dif 3918  df-nul 4288  df-if 4492  df-sn 4592
This theorem is referenced by:  hashrabrsn  14279  hashrabsn01  14280  hashrabsn1  14281  dvnprodlem3  44263
  Copyright terms: Public domain W3C validator