![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabrsn | Structured version Visualization version GIF version |
Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Proof shortened by AV, 21-Jul-2019.) |
Ref | Expression |
---|---|
rabrsn | ⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabsnifsb 4688 | . . 3 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) | |
2 | 1 | eqeq2i 2750 | . 2 ⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)) |
3 | ifeqor 4542 | . . . 4 ⊢ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅) | |
4 | orcom 869 | . . . 4 ⊢ ((if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})) | |
5 | 3, 4 | mpbi 229 | . . 3 ⊢ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}) |
6 | eqeq1 2741 | . . . 4 ⊢ (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅)) | |
7 | eqeq1 2741 | . . . 4 ⊢ (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = {𝐴} ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})) | |
8 | 6, 7 | orbi12d 918 | . . 3 ⊢ (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → ((𝑀 = ∅ ∨ 𝑀 = {𝐴}) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}))) |
9 | 5, 8 | mpbiri 258 | . 2 ⊢ (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) |
10 | 2, 9 | sylbi 216 | 1 ⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1542 {crab 3410 [wsbc 3744 ∅c0 4287 ifcif 4491 {csn 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-rab 3411 df-sbc 3745 df-dif 3918 df-nul 4288 df-if 4492 df-sn 4592 |
This theorem is referenced by: hashrabrsn 14279 hashrabsn01 14280 hashrabsn1 14281 dvnprodlem3 44263 |
Copyright terms: Public domain | W3C validator |