|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rabrsn | Structured version Visualization version GIF version | ||
| Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Proof shortened by AV, 21-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| rabrsn | ⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rabsnifsb 4722 | . . 3 ⊢ {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) | |
| 2 | 1 | eqeq2i 2750 | . 2 ⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)) | 
| 3 | ifeqor 4577 | . . . 4 ⊢ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅) | |
| 4 | orcom 871 | . . . 4 ⊢ ((if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})) | |
| 5 | 3, 4 | mpbi 230 | . . 3 ⊢ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}) | 
| 6 | eqeq1 2741 | . . . 4 ⊢ (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅)) | |
| 7 | eqeq1 2741 | . . . 4 ⊢ (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = {𝐴} ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})) | |
| 8 | 6, 7 | orbi12d 919 | . . 3 ⊢ (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → ((𝑀 = ∅ ∨ 𝑀 = {𝐴}) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}))) | 
| 9 | 5, 8 | mpbiri 258 | . 2 ⊢ (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) | 
| 10 | 2, 9 | sylbi 217 | 1 ⊢ (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∨ wo 848 = wceq 1540 {crab 3436 [wsbc 3788 ∅c0 4333 ifcif 4525 {csn 4626 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-rab 3437 df-sbc 3789 df-dif 3954 df-nul 4334 df-if 4526 df-sn 4627 | 
| This theorem is referenced by: hashrabrsn 14411 hashrabsn01 14412 hashrabsn1 14413 dvnprodlem3 45963 | 
| Copyright terms: Public domain | W3C validator |