MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpr Structured version   Visualization version   GIF version

Theorem ifpr 4627
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.)
Assertion
Ref Expression
ifpr ((𝐴𝐶𝐵𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})

Proof of Theorem ifpr
StepHypRef Expression
1 elex 3450 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3450 . 2 (𝐵𝐷𝐵 ∈ V)
3 ifcl 4504 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ V)
4 ifeqor 4510 . . . 4 (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)
5 elprg 4582 . . . 4 (if(𝜑, 𝐴, 𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵} ↔ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵)))
64, 5mpbiri 257 . . 3 (if(𝜑, 𝐴, 𝐵) ∈ V → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
73, 6syl 17 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
81, 2, 7syl2an 596 1 ((𝐴𝐶𝐵𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  Vcvv 3432  ifcif 4459  {cpr 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-if 4460  df-sn 4562  df-pr 4564
This theorem is referenced by:  suppr  9230  infpr  9262  uvcvvcl  20994  indf  31983
  Copyright terms: Public domain W3C validator