![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifpr | Structured version Visualization version GIF version |
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.) |
Ref | Expression |
---|---|
ifpr | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3485 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
2 | elex 3485 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
3 | ifcl 4566 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ V) | |
4 | ifeqor 4572 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) | |
5 | elprg 4642 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵} ↔ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵))) | |
6 | 4, 5 | mpbiri 258 | . . 3 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ V → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
8 | 1, 2, 7 | syl2an 595 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 Vcvv 3466 ifcif 4521 {cpr 4623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-un 3946 df-if 4522 df-sn 4622 df-pr 4624 |
This theorem is referenced by: suppr 9463 infpr 9495 uvcvvcl 21652 indf 33505 |
Copyright terms: Public domain | W3C validator |