![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifpr | Structured version Visualization version GIF version |
Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.) |
Ref | Expression |
---|---|
ifpr | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3489 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
2 | elex 3489 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
3 | ifcl 4570 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ V) | |
4 | ifeqor 4576 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) | |
5 | elprg 4646 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵} ↔ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵))) | |
6 | 4, 5 | mpbiri 258 | . . 3 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ V → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
8 | 1, 2, 7 | syl2an 595 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 846 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ifcif 4525 {cpr 4627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3472 df-un 3950 df-if 4526 df-sn 4626 df-pr 4628 |
This theorem is referenced by: suppr 9489 infpr 9521 uvcvvcl 21715 indf 33629 |
Copyright terms: Public domain | W3C validator |