| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifpr | Structured version Visualization version GIF version | ||
| Description: Membership of a conditional operator in an unordered pair. (Contributed by NM, 17-Jun-2007.) |
| Ref | Expression |
|---|---|
| ifpr | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3458 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 3458 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 3 | ifcl 4522 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ V) | |
| 4 | ifeqor 4528 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 5 | elprg 4600 | . . . 4 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ V → (if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵} ↔ (if(𝜑, 𝐴, 𝐵) = 𝐴 ∨ if(𝜑, 𝐴, 𝐵) = 𝐵))) | |
| 6 | 4, 5 | mpbiri 258 | . . 3 ⊢ (if(𝜑, 𝐴, 𝐵) ∈ V → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
| 7 | 3, 6 | syl 17 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
| 8 | 1, 2, 7 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → if(𝜑, 𝐴, 𝐵) ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ifcif 4476 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-if 4477 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: suppr 9365 infpr 9398 uvcvvcl 21728 indf 32843 |
| Copyright terms: Public domain | W3C validator |