MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmolefac Structured version   Visualization version   GIF version

Theorem prmolefac 16374
Description: The primorial of a positive integer is less than or equal to the factorial of the integer. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.)
Assertion
Ref Expression
prmolefac (𝑁 ∈ ℕ0 → (#p𝑁) ≤ (!‘𝑁))

Proof of Theorem prmolefac
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . 3 𝑘 𝑁 ∈ ℕ0
2 fzfid 13333 . . 3 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
3 elfznn 12928 . . . . . 6 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
43adantl 484 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
5 1nn 11641 . . . . . 6 1 ∈ ℕ
65a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ∈ ℕ)
74, 6ifcld 4510 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
87nnred 11645 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ)
9 ifeqor 4514 . . . 4 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1)
10 nnnn0 11896 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
1110nn0ge0d 11950 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
123, 11syl 17 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 0 ≤ 𝑘)
1312adantl 484 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ 𝑘)
14 breq2 5061 . . . . . 6 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 𝑘))
1513, 14syl5ibr 248 . . . . 5 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)))
16 0le1 11155 . . . . . . 7 0 ≤ 1
17 breq2 5061 . . . . . . . 8 (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1))
1817adantr 483 . . . . . . 7 ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁))) → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1))
1916, 18mpbiri 260 . . . . . 6 ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁))) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))
2019ex 415 . . . . 5 (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)))
2115, 20jaoi 853 . . . 4 ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)))
229, 21ax-mp 5 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))
234nnred 11645 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
2423leidd 11198 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘𝑘)
25 breq1 5060 . . . . . 6 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘𝑘𝑘))
2624, 25syl5ibr 248 . . . . 5 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘))
274nnge1d 11677 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ≤ 𝑘)
28 breq1 5060 . . . . . 6 (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘 ↔ 1 ≤ 𝑘))
2927, 28syl5ibr 248 . . . . 5 (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘))
3026, 29jaoi 853 . . . 4 ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘))
319, 30ax-mp 5 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)
321, 2, 8, 22, 23, 31fprodle 15342 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ≤ ∏𝑘 ∈ (1...𝑁)𝑘)
33 prmoval 16361 . 2 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
34 fprodfac 15319 . 2 (𝑁 ∈ ℕ0 → (!‘𝑁) = ∏𝑘 ∈ (1...𝑁)𝑘)
3532, 33, 343brtr4d 5089 1 (𝑁 ∈ ℕ0 → (#p𝑁) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wo 843   = wceq 1531  wcel 2108  ifcif 4465   class class class wbr 5057  cfv 6348  (class class class)co 7148  0cc0 10529  1c1 10530  cle 10668  cn 11630  0cn0 11889  ...cfz 12884  !cfa 13625  cprod 15251  cprime 16007  #pcprmo 16359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-fal 1544  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-ico 12736  df-fz 12885  df-fzo 13026  df-seq 13362  df-exp 13422  df-fac 13626  df-hash 13683  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-prod 15252  df-prmo 16360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator