|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > prmolefac | Structured version Visualization version GIF version | ||
| Description: The primorial of a positive integer is less than or equal to the factorial of the integer. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) | 
| Ref | Expression | 
|---|---|
| prmolefac | ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (!‘𝑁)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1914 | . . 3 ⊢ Ⅎ𝑘 𝑁 ∈ ℕ0 | |
| 2 | fzfid 14014 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
| 3 | elfznn 13593 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
| 4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ) | 
| 5 | 1nn 12277 | . . . . . 6 ⊢ 1 ∈ ℕ | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 1 ∈ ℕ) | 
| 7 | 4, 6 | ifcld 4572 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ) | 
| 8 | 7 | nnred 12281 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ) | 
| 9 | ifeqor 4577 | . . . 4 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) | |
| 10 | nnnn0 12533 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 11 | 10 | nn0ge0d 12590 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 0 ≤ 𝑘) | 
| 12 | 3, 11 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → 0 ≤ 𝑘) | 
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ 𝑘) | 
| 14 | breq2 5147 | . . . . . 6 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 𝑘)) | |
| 15 | 13, 14 | imbitrrid 246 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))) | 
| 16 | 0le1 11786 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 17 | breq2 5147 | . . . . . . . 8 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1)) | |
| 18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁))) → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1)) | 
| 19 | 16, 18 | mpbiri 258 | . . . . . 6 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁))) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)) | 
| 20 | 19 | ex 412 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))) | 
| 21 | 15, 20 | jaoi 858 | . . . 4 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))) | 
| 22 | 9, 21 | ax-mp 5 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)) | 
| 23 | 4 | nnred 12281 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ) | 
| 24 | 23 | leidd 11829 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≤ 𝑘) | 
| 25 | breq1 5146 | . . . . . 6 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘 ↔ 𝑘 ≤ 𝑘)) | |
| 26 | 24, 25 | imbitrrid 246 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)) | 
| 27 | 4 | nnge1d 12314 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 1 ≤ 𝑘) | 
| 28 | breq1 5146 | . . . . . 6 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘 ↔ 1 ≤ 𝑘)) | |
| 29 | 27, 28 | imbitrrid 246 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)) | 
| 30 | 26, 29 | jaoi 858 | . . . 4 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)) | 
| 31 | 9, 30 | ax-mp 5 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘) | 
| 32 | 1, 2, 8, 22, 23, 31 | fprodle 16032 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ≤ ∏𝑘 ∈ (1...𝑁)𝑘) | 
| 33 | prmoval 17071 | . 2 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) | |
| 34 | fprodfac 16009 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) = ∏𝑘 ∈ (1...𝑁)𝑘) | |
| 35 | 32, 33, 34 | 3brtr4d 5175 | 1 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (!‘𝑁)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ifcif 4525 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 ≤ cle 11296 ℕcn 12266 ℕ0cn0 12526 ...cfz 13547 !cfa 14312 ∏cprod 15939 ℙcprime 16708 #pcprmo 17069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-z 12614 df-uz 12879 df-rp 13035 df-ico 13393 df-fz 13548 df-fzo 13695 df-seq 14043 df-exp 14103 df-fac 14313 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-prod 15940 df-prmo 17070 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |