MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmolefac Structured version   Visualization version   GIF version

Theorem prmolefac 16978
Description: The primorial of a positive integer is less than or equal to the factorial of the integer. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.)
Assertion
Ref Expression
prmolefac (𝑁 ∈ ℕ0 → (#p𝑁) ≤ (!‘𝑁))

Proof of Theorem prmolefac
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . 3 𝑘 𝑁 ∈ ℕ0
2 fzfid 13935 . . 3 (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin)
3 elfznn 13527 . . . . . 6 (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ)
43adantl 481 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ)
5 1nn 12220 . . . . . 6 1 ∈ ℕ
65a1i 11 . . . . 5 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ∈ ℕ)
74, 6ifcld 4566 . . . 4 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
87nnred 12224 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ)
9 ifeqor 4571 . . . 4 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1)
10 nnnn0 12476 . . . . . . . . 9 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
1110nn0ge0d 12532 . . . . . . . 8 (𝑘 ∈ ℕ → 0 ≤ 𝑘)
123, 11syl 17 . . . . . . 7 (𝑘 ∈ (1...𝑁) → 0 ≤ 𝑘)
1312adantl 481 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ 𝑘)
14 breq2 5142 . . . . . 6 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 𝑘))
1513, 14imbitrrid 245 . . . . 5 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)))
16 0le1 11734 . . . . . . 7 0 ≤ 1
17 breq2 5142 . . . . . . . 8 (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1))
1817adantr 480 . . . . . . 7 ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁))) → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1))
1916, 18mpbiri 258 . . . . . 6 ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁))) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))
2019ex 412 . . . . 5 (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)))
2115, 20jaoi 854 . . . 4 ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)))
229, 21ax-mp 5 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))
234nnred 12224 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ)
2423leidd 11777 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 𝑘𝑘)
25 breq1 5141 . . . . . 6 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘𝑘𝑘))
2624, 25imbitrrid 245 . . . . 5 (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘))
274nnge1d 12257 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → 1 ≤ 𝑘)
28 breq1 5141 . . . . . 6 (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘 ↔ 1 ≤ 𝑘))
2927, 28imbitrrid 245 . . . . 5 (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘))
3026, 29jaoi 854 . . . 4 ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘))
319, 30ax-mp 5 . . 3 ((𝑁 ∈ ℕ0𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)
321, 2, 8, 22, 23, 31fprodle 15937 . 2 (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ≤ ∏𝑘 ∈ (1...𝑁)𝑘)
33 prmoval 16965 . 2 (𝑁 ∈ ℕ0 → (#p𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1))
34 fprodfac 15914 . 2 (𝑁 ∈ ℕ0 → (!‘𝑁) = ∏𝑘 ∈ (1...𝑁)𝑘)
3532, 33, 343brtr4d 5170 1 (𝑁 ∈ ℕ0 → (#p𝑁) ≤ (!‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844   = wceq 1533  wcel 2098  ifcif 4520   class class class wbr 5138  cfv 6533  (class class class)co 7401  0cc0 11106  1c1 11107  cle 11246  cn 12209  0cn0 12469  ...cfz 13481  !cfa 14230  cprod 15846  cprime 16605  #pcprmo 16963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-ico 13327  df-fz 13482  df-fzo 13625  df-seq 13964  df-exp 14025  df-fac 14231  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-prod 15847  df-prmo 16964
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator