![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmolefac | Structured version Visualization version GIF version |
Description: The primorial of a positive integer is less than or equal to the factorial of the integer. (Contributed by AV, 15-Aug-2020.) (Revised by AV, 29-Aug-2020.) |
Ref | Expression |
---|---|
prmolefac | ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (!‘𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . . 3 ⊢ Ⅎ𝑘 𝑁 ∈ ℕ0 | |
2 | fzfid 13935 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (1...𝑁) ∈ Fin) | |
3 | elfznn 13527 | . . . . . 6 ⊢ (𝑘 ∈ (1...𝑁) → 𝑘 ∈ ℕ) | |
4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℕ) |
5 | 1nn 12220 | . . . . . 6 ⊢ 1 ∈ ℕ | |
6 | 5 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 1 ∈ ℕ) |
7 | 4, 6 | ifcld 4566 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ) |
8 | 7 | nnred 12224 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ) |
9 | ifeqor 4571 | . . . 4 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) | |
10 | nnnn0 12476 | . . . . . . . . 9 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
11 | 10 | nn0ge0d 12532 | . . . . . . . 8 ⊢ (𝑘 ∈ ℕ → 0 ≤ 𝑘) |
12 | 3, 11 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ (1...𝑁) → 0 ≤ 𝑘) |
13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ 𝑘) |
14 | breq2 5142 | . . . . . 6 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 𝑘)) | |
15 | 13, 14 | imbitrrid 245 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))) |
16 | 0le1 11734 | . . . . . . 7 ⊢ 0 ≤ 1 | |
17 | breq2 5142 | . . . . . . . 8 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1)) | |
18 | 17 | adantr 480 | . . . . . . 7 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁))) → (0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1) ↔ 0 ≤ 1)) |
19 | 16, 18 | mpbiri 258 | . . . . . 6 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 1 ∧ (𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁))) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)) |
20 | 19 | ex 412 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))) |
21 | 15, 20 | jaoi 854 | . . . 4 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1))) |
22 | 9, 21 | ax-mp 5 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 0 ≤ if(𝑘 ∈ ℙ, 𝑘, 1)) |
23 | 4 | nnred 12224 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ∈ ℝ) |
24 | 23 | leidd 11777 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 𝑘 ≤ 𝑘) |
25 | breq1 5141 | . . . . . 6 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘 ↔ 𝑘 ≤ 𝑘)) | |
26 | 24, 25 | imbitrrid 245 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)) |
27 | 4 | nnge1d 12257 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → 1 ≤ 𝑘) |
28 | breq1 5141 | . . . . . 6 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → (if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘 ↔ 1 ≤ 𝑘)) | |
29 | 27, 28 | imbitrrid 245 | . . . . 5 ⊢ (if(𝑘 ∈ ℙ, 𝑘, 1) = 1 → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)) |
30 | 26, 29 | jaoi 854 | . . . 4 ⊢ ((if(𝑘 ∈ ℙ, 𝑘, 1) = 𝑘 ∨ if(𝑘 ∈ ℙ, 𝑘, 1) = 1) → ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘)) |
31 | 9, 30 | ax-mp 5 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑘 ∈ (1...𝑁)) → if(𝑘 ∈ ℙ, 𝑘, 1) ≤ 𝑘) |
32 | 1, 2, 8, 22, 23, 31 | fprodle 15937 | . 2 ⊢ (𝑁 ∈ ℕ0 → ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1) ≤ ∏𝑘 ∈ (1...𝑁)𝑘) |
33 | prmoval 16965 | . 2 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) = ∏𝑘 ∈ (1...𝑁)if(𝑘 ∈ ℙ, 𝑘, 1)) | |
34 | fprodfac 15914 | . 2 ⊢ (𝑁 ∈ ℕ0 → (!‘𝑁) = ∏𝑘 ∈ (1...𝑁)𝑘) | |
35 | 32, 33, 34 | 3brtr4d 5170 | 1 ⊢ (𝑁 ∈ ℕ0 → (#p‘𝑁) ≤ (!‘𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ∈ wcel 2098 ifcif 4520 class class class wbr 5138 ‘cfv 6533 (class class class)co 7401 0cc0 11106 1c1 11107 ≤ cle 11246 ℕcn 12209 ℕ0cn0 12469 ...cfz 13481 !cfa 14230 ∏cprod 15846 ℙcprime 16605 #pcprmo 16963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-se 5622 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-isom 6542 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-oi 9501 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-ico 13327 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-fac 14231 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-prod 15847 df-prmo 16964 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |