MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifnot Structured version   Visualization version   GIF version

Theorem ifnot 4600
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.)
Assertion
Ref Expression
ifnot if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)

Proof of Theorem ifnot
StepHypRef Expression
1 notnot 142 . . . 4 (𝜑 → ¬ ¬ 𝜑)
21iffalsed 4559 . . 3 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵)
3 iftrue 4554 . . 3 (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵)
42, 3eqtr4d 2783 . 2 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
5 iftrue 4554 . . 3 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴)
6 iffalse 4557 . . 3 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴)
75, 6eqtr4d 2783 . 2 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
84, 7pm2.61i 182 1 if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  ifcif 4548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-if 4549
This theorem is referenced by:  suppsnop  8219  2resupmax  13250  sadadd2lem2  16496  maducoeval2  22667  tmsxpsval2  24573  itg2uba  25798  lgsneg  27383  lgsdilem  27386  sgnneg  34505  bj-xpimasn  36921  itgaddnclem2  37639  ftc1anclem5  37657
  Copyright terms: Public domain W3C validator