![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnot | Structured version Visualization version GIF version |
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.) |
Ref | Expression |
---|---|
ifnot | ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . . . 4 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | 1 | iffalsed 4532 | . . 3 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵) |
3 | iftrue 4527 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵) | |
4 | 2, 3 | eqtr4d 2767 | . 2 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
5 | iftrue 4527 | . . 3 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴) | |
6 | iffalse 4530 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴) | |
7 | 5, 6 | eqtr4d 2767 | . 2 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ifcif 4521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-if 4522 |
This theorem is referenced by: suppsnop 8158 2resupmax 13168 sadadd2lem2 16394 maducoeval2 22486 tmsxpsval2 24392 itg2uba 25617 lgsneg 27194 lgsdilem 27197 sgnneg 34058 bj-xpimasn 36336 itgaddnclem2 37050 ftc1anclem5 37068 |
Copyright terms: Public domain | W3C validator |