Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifnot | Structured version Visualization version GIF version |
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.) |
Ref | Expression |
---|---|
ifnot | ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . . . 4 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | 1 | iffalsed 4467 | . . 3 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵) |
3 | iftrue 4462 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵) | |
4 | 2, 3 | eqtr4d 2781 | . 2 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
5 | iftrue 4462 | . . 3 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴) | |
6 | iffalse 4465 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴) | |
7 | 5, 6 | eqtr4d 2781 | . 2 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ifcif 4456 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-if 4457 |
This theorem is referenced by: suppsnop 7965 2resupmax 12851 sadadd2lem2 16085 maducoeval2 21697 tmsxpsval2 23601 itg2uba 24813 lgsneg 26374 lgsdilem 26377 sgnneg 32407 bj-xpimasn 35072 itgaddnclem2 35763 ftc1anclem5 35781 |
Copyright terms: Public domain | W3C validator |