| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifnot | Structured version Visualization version GIF version | ||
| Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.) |
| Ref | Expression |
|---|---|
| ifnot | ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnot 142 | . . . 4 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
| 2 | 1 | iffalsed 4502 | . . 3 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵) |
| 3 | iftrue 4497 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵) | |
| 4 | 2, 3 | eqtr4d 2768 | . 2 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
| 5 | iftrue 4497 | . . 3 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴) | |
| 6 | iffalse 4500 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴) | |
| 7 | 5, 6 | eqtr4d 2768 | . 2 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
| 8 | 4, 7 | pm2.61i 182 | 1 ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-if 4492 |
| This theorem is referenced by: suppsnop 8160 2resupmax 13155 sadadd2lem2 16427 maducoeval2 22534 tmsxpsval2 24434 itg2uba 25651 lgsneg 27239 lgsdilem 27242 sgnneg 32765 bj-xpimasn 36950 itgaddnclem2 37680 ftc1anclem5 37698 |
| Copyright terms: Public domain | W3C validator |