![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifnot | Structured version Visualization version GIF version |
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.) |
Ref | Expression |
---|---|
ifnot | ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | notnot 142 | . . . 4 ⊢ (𝜑 → ¬ ¬ 𝜑) | |
2 | 1 | iffalsed 4498 | . . 3 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵) |
3 | iftrue 4493 | . . 3 ⊢ (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵) | |
4 | 2, 3 | eqtr4d 2780 | . 2 ⊢ (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
5 | iftrue 4493 | . . 3 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴) | |
6 | iffalse 4496 | . . 3 ⊢ (¬ 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴) | |
7 | 5, 6 | eqtr4d 2780 | . 2 ⊢ (¬ 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)) |
8 | 4, 7 | pm2.61i 182 | 1 ⊢ if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ifcif 4487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-if 4488 |
This theorem is referenced by: suppsnop 8110 2resupmax 13108 sadadd2lem2 16331 maducoeval2 21992 tmsxpsval2 23898 itg2uba 25111 lgsneg 26672 lgsdilem 26675 sgnneg 33143 bj-xpimasn 35429 itgaddnclem2 36140 ftc1anclem5 36158 |
Copyright terms: Public domain | W3C validator |