MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifnot Structured version   Visualization version   GIF version

Theorem ifnot 4528
Description: Negating the first argument swaps the last two arguments of a conditional operator. (Contributed by NM, 21-Jun-2007.)
Assertion
Ref Expression
ifnot if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)

Proof of Theorem ifnot
StepHypRef Expression
1 notnot 142 . . . 4 (𝜑 → ¬ ¬ 𝜑)
21iffalsed 4486 . . 3 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐵)
3 iftrue 4481 . . 3 (𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐵)
42, 3eqtr4d 2769 . 2 (𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
5 iftrue 4481 . . 3 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = 𝐴)
6 iffalse 4484 . . 3 𝜑 → if(𝜑, 𝐵, 𝐴) = 𝐴)
75, 6eqtr4d 2769 . 2 𝜑 → if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴))
84, 7pm2.61i 182 1 if(¬ 𝜑, 𝐴, 𝐵) = if(𝜑, 𝐵, 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  ifcif 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-if 4476
This theorem is referenced by:  suppsnop  8108  2resupmax  13084  sadadd2lem2  16358  maducoeval2  22553  tmsxpsval2  24452  itg2uba  25669  lgsneg  27257  lgsdilem  27260  sgnneg  32811  bj-xpimasn  36988  itgaddnclem2  37718  ftc1anclem5  37736
  Copyright terms: Public domain W3C validator