| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > muval2 | Structured version Visualization version GIF version | ||
| Description: The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.) |
| Ref | Expression |
|---|---|
| muval2 | ⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ ((μ‘𝐴) ≠ 0 ↔ ¬ (μ‘𝐴) = 0) | |
| 2 | ifeqor 4530 | . . . . 5 ⊢ (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0 ∨ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
| 3 | muval 27059 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
| 4 | 3 | eqeq1d 2731 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0)) |
| 5 | 3 | eqeq1d 2731 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| 6 | 4, 5 | orbi12d 918 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((μ‘𝐴) = 0 ∨ (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) ↔ (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0 ∨ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))))) |
| 7 | 2, 6 | mpbiri 258 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ∨ (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| 8 | 7 | ord 864 | . . 3 ⊢ (𝐴 ∈ ℕ → (¬ (μ‘𝐴) = 0 → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| 9 | 1, 8 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) |
| 10 | 9 | imp 406 | 1 ⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 {crab 3396 ifcif 4478 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 -cneg 11367 ℕcn 12147 2c2 12202 ↑cexp 13987 ♯chash 14256 ∥ cdvds 16182 ℙcprime 16601 μcmu 27022 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-mulcl 11090 ax-i2m1 11096 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-mu 27028 |
| This theorem is referenced by: mumul 27108 musum 27118 |
| Copyright terms: Public domain | W3C validator |