Step | Hyp | Ref
| Expression |
1 | | df-ne 2939 |
. . 3
β’
((ΞΌβπ΄) β
0 β Β¬ (ΞΌβπ΄) = 0) |
2 | | ifeqor 4580 |
. . . . 5
β’
(if(βπ β
β (πβ2) β₯
π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄}))) = 0 β¨
if(βπ β β
(πβ2) β₯ π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄}))) =
(-1β(β―β{π
β β β£ π
β₯ π΄}))) |
3 | | muval 26870 |
. . . . . . 7
β’ (π΄ β β β
(ΞΌβπ΄) =
if(βπ β β
(πβ2) β₯ π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄})))) |
4 | 3 | eqeq1d 2732 |
. . . . . 6
β’ (π΄ β β β
((ΞΌβπ΄) = 0 β
if(βπ β β
(πβ2) β₯ π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄}))) =
0)) |
5 | 3 | eqeq1d 2732 |
. . . . . 6
β’ (π΄ β β β
((ΞΌβπ΄) =
(-1β(β―β{π
β β β£ π
β₯ π΄})) β
if(βπ β β
(πβ2) β₯ π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄}))) =
(-1β(β―β{π
β β β£ π
β₯ π΄})))) |
6 | 4, 5 | orbi12d 915 |
. . . . 5
β’ (π΄ β β β
(((ΞΌβπ΄) = 0 β¨
(ΞΌβπ΄) =
(-1β(β―β{π
β β β£ π
β₯ π΄}))) β
(if(βπ β β
(πβ2) β₯ π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄}))) = 0 β¨
if(βπ β β
(πβ2) β₯ π΄, 0,
(-1β(β―β{π
β β β£ π
β₯ π΄}))) =
(-1β(β―β{π
β β β£ π
β₯ π΄}))))) |
7 | 2, 6 | mpbiri 257 |
. . . 4
β’ (π΄ β β β
((ΞΌβπ΄) = 0 β¨
(ΞΌβπ΄) =
(-1β(β―β{π
β β β£ π
β₯ π΄})))) |
8 | 7 | ord 860 |
. . 3
β’ (π΄ β β β (Β¬
(ΞΌβπ΄) = 0 β
(ΞΌβπ΄) =
(-1β(β―β{π
β β β£ π
β₯ π΄})))) |
9 | 1, 8 | biimtrid 241 |
. 2
β’ (π΄ β β β
((ΞΌβπ΄) β 0
β (ΞΌβπ΄) =
(-1β(β―β{π
β β β£ π
β₯ π΄})))) |
10 | 9 | imp 405 |
1
β’ ((π΄ β β β§
(ΞΌβπ΄) β 0)
β (ΞΌβπ΄) =
(-1β(β―β{π
β β β£ π
β₯ π΄}))) |