MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  muval2 Structured version   Visualization version   GIF version

Theorem muval2 26872
Description: The value of the MΓΆbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.)
Assertion
Ref Expression
muval2 ((𝐴 ∈ β„• ∧ (ΞΌβ€˜π΄) β‰  0) β†’ (ΞΌβ€˜π΄) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})))
Distinct variable group:   𝐴,𝑝

Proof of Theorem muval2
StepHypRef Expression
1 df-ne 2939 . . 3 ((ΞΌβ€˜π΄) β‰  0 ↔ Β¬ (ΞΌβ€˜π΄) = 0)
2 ifeqor 4580 . . . . 5 (if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))) = 0 ∨ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})))
3 muval 26870 . . . . . . 7 (𝐴 ∈ β„• β†’ (ΞΌβ€˜π΄) = if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))))
43eqeq1d 2732 . . . . . 6 (𝐴 ∈ β„• β†’ ((ΞΌβ€˜π΄) = 0 ↔ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))) = 0))
53eqeq1d 2732 . . . . . 6 (𝐴 ∈ β„• β†’ ((ΞΌβ€˜π΄) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})) ↔ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))))
64, 5orbi12d 915 . . . . 5 (𝐴 ∈ β„• β†’ (((ΞΌβ€˜π΄) = 0 ∨ (ΞΌβ€˜π΄) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))) ↔ (if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))) = 0 ∨ if(βˆƒπ‘ ∈ β„™ (𝑝↑2) βˆ₯ 𝐴, 0, (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})))))
72, 6mpbiri 257 . . . 4 (𝐴 ∈ β„• β†’ ((ΞΌβ€˜π΄) = 0 ∨ (ΞΌβ€˜π΄) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))))
87ord 860 . . 3 (𝐴 ∈ β„• β†’ (Β¬ (ΞΌβ€˜π΄) = 0 β†’ (ΞΌβ€˜π΄) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))))
91, 8biimtrid 241 . 2 (𝐴 ∈ β„• β†’ ((ΞΌβ€˜π΄) β‰  0 β†’ (ΞΌβ€˜π΄) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴}))))
109imp 405 1 ((𝐴 ∈ β„• ∧ (ΞΌβ€˜π΄) β‰  0) β†’ (ΞΌβ€˜π΄) = (-1↑(β™―β€˜{𝑝 ∈ β„™ ∣ 𝑝 βˆ₯ 𝐴})))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∨ wo 843   = wceq 1539   ∈ wcel 2104   β‰  wne 2938  βˆƒwrex 3068  {crab 3430  ifcif 4529   class class class wbr 5149  β€˜cfv 6544  (class class class)co 7413  0cc0 11114  1c1 11115  -cneg 11451  β„•cn 12218  2c2 12273  β†‘cexp 14033  β™―chash 14296   βˆ₯ cdvds 16203  β„™cprime 16614  ΞΌcmu 26833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-mulcl 11176  ax-i2m1 11182
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7416  df-mu 26839
This theorem is referenced by:  mumul  26919  musum  26929
  Copyright terms: Public domain W3C validator