|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > muval2 | Structured version Visualization version GIF version | ||
| Description: The value of the Möbius function at a squarefree number. (Contributed by Mario Carneiro, 3-Oct-2014.) | 
| Ref | Expression | 
|---|---|
| muval2 | ⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ne 2941 | . . 3 ⊢ ((μ‘𝐴) ≠ 0 ↔ ¬ (μ‘𝐴) = 0) | |
| 2 | ifeqor 4577 | . . . . 5 ⊢ (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0 ∨ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | |
| 3 | muval 27175 | . . . . . . 7 ⊢ (𝐴 ∈ ℕ → (μ‘𝐴) = if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | |
| 4 | 3 | eqeq1d 2739 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0)) | 
| 5 | 3 | eqeq1d 2739 | . . . . . 6 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})) ↔ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | 
| 6 | 4, 5 | orbi12d 919 | . . . . 5 ⊢ (𝐴 ∈ ℕ → (((μ‘𝐴) = 0 ∨ (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) ↔ (if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = 0 ∨ if(∃𝑝 ∈ ℙ (𝑝↑2) ∥ 𝐴, 0, (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))))) | 
| 7 | 2, 6 | mpbiri 258 | . . . 4 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) = 0 ∨ (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | 
| 8 | 7 | ord 865 | . . 3 ⊢ (𝐴 ∈ ℕ → (¬ (μ‘𝐴) = 0 → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | 
| 9 | 1, 8 | biimtrid 242 | . 2 ⊢ (𝐴 ∈ ℕ → ((μ‘𝐴) ≠ 0 → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴})))) | 
| 10 | 9 | imp 406 | 1 ⊢ ((𝐴 ∈ ℕ ∧ (μ‘𝐴) ≠ 0) → (μ‘𝐴) = (-1↑(♯‘{𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴}))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∃wrex 3070 {crab 3436 ifcif 4525 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 0cc0 11155 1c1 11156 -cneg 11493 ℕcn 12266 2c2 12321 ↑cexp 14102 ♯chash 14369 ∥ cdvds 16290 ℙcprime 16708 μcmu 27138 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-mulcl 11217 ax-i2m1 11223 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-mu 27144 | 
| This theorem is referenced by: mumul 27224 musum 27234 | 
| Copyright terms: Public domain | W3C validator |