Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polatN Structured version   Visualization version   GIF version

Theorem polatN 39950
Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polat.o = (oc‘𝐾)
polat.a 𝐴 = (Atoms‘𝐾)
polat.m 𝑀 = (pmap‘𝐾)
polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polatN ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝑀‘( 𝑄)))

Proof of Theorem polatN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 snssi 4784 . . 3 (𝑄𝐴 → {𝑄} ⊆ 𝐴)
2 polat.o . . . 4 = (oc‘𝐾)
3 polat.a . . . 4 𝐴 = (Atoms‘𝐾)
4 polat.m . . . 4 𝑀 = (pmap‘𝐾)
5 polat.p . . . 4 𝑃 = (⊥𝑃𝐾)
62, 3, 4, 5polvalN 39924 . . 3 ((𝐾 ∈ OL ∧ {𝑄} ⊆ 𝐴) → (𝑃‘{𝑄}) = (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))))
71, 6sylan2 593 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))))
8 2fveq3 6881 . . . . 5 (𝑝 = 𝑄 → (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
98iinxsng 5064 . . . 4 (𝑄𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
109adantl 481 . . 3 ((𝐾 ∈ OL ∧ 𝑄𝐴) → 𝑝 ∈ {𝑄} (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
1110ineq2d 4195 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))) = (𝐴 ∩ (𝑀‘( 𝑄))))
12 olop 39232 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
13 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 3atbase 39307 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1513, 2opoccl 39212 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ( 𝑄) ∈ (Base‘𝐾))
1612, 14, 15syl2an 596 . . . 4 ((𝐾 ∈ OL ∧ 𝑄𝐴) → ( 𝑄) ∈ (Base‘𝐾))
1713, 3, 4pmapssat 39778 . . . 4 ((𝐾 ∈ OL ∧ ( 𝑄) ∈ (Base‘𝐾)) → (𝑀‘( 𝑄)) ⊆ 𝐴)
1816, 17syldan 591 . . 3 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑀‘( 𝑄)) ⊆ 𝐴)
19 sseqin2 4198 . . 3 ((𝑀‘( 𝑄)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑀‘( 𝑄))) = (𝑀‘( 𝑄)))
2018, 19sylib 218 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝐴 ∩ (𝑀‘( 𝑄))) = (𝑀‘( 𝑄)))
217, 11, 203eqtrd 2774 1 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝑀‘( 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  cin 3925  wss 3926  {csn 4601   ciin 4968  cfv 6531  Basecbs 17228  occoc 17279  OPcops 39190  OLcol 39192  Atomscatm 39281  pmapcpmap 39516  𝑃cpolN 39921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oposet 39194  df-ol 39196  df-ats 39285  df-pmap 39523  df-polarityN 39922
This theorem is referenced by:  2polatN  39951
  Copyright terms: Public domain W3C validator