![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polatN | Structured version Visualization version GIF version |
Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polat.o | ⊢ ⊥ = (oc‘𝐾) |
polat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polat.m | ⊢ 𝑀 = (pmap‘𝐾) |
polat.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polatN | ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4557 | . . 3 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ⊆ 𝐴) | |
2 | polat.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
3 | polat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | polat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | polat.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
6 | 2, 3, 4, 5 | polvalN 35980 | . . 3 ⊢ ((𝐾 ∈ OL ∧ {𝑄} ⊆ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
7 | 1, 6 | sylan2 588 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
8 | 2fveq3 6438 | . . . . 5 ⊢ (𝑝 = 𝑄 → (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) | |
9 | 8 | iinxsng 4820 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
10 | 9 | adantl 475 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
11 | 10 | ineq2d 4041 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝))) = (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄)))) |
12 | olop 35289 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
13 | eqid 2825 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 3 | atbase 35364 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
15 | 13, 2 | opoccl 35269 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
16 | 12, 14, 15 | syl2an 591 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
17 | 13, 3, 4 | pmapssat 35834 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
18 | 16, 17 | syldan 587 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
19 | sseqin2 4044 | . . 3 ⊢ ((𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) | |
20 | 18, 19 | sylib 210 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) |
21 | 7, 11, 20 | 3eqtrd 2865 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∩ cin 3797 ⊆ wss 3798 {csn 4397 ∩ ciin 4741 ‘cfv 6123 Basecbs 16222 occoc 16313 OPcops 35247 OLcol 35249 Atomscatm 35338 pmapcpmap 35572 ⊥𝑃cpolN 35977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-op 4404 df-uni 4659 df-iun 4742 df-iin 4743 df-br 4874 df-opab 4936 df-mpt 4953 df-id 5250 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-ov 6908 df-oposet 35251 df-ol 35253 df-ats 35342 df-pmap 35579 df-polarityN 35978 |
This theorem is referenced by: 2polatN 36007 |
Copyright terms: Public domain | W3C validator |