![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > polatN | Structured version Visualization version GIF version |
Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polat.o | ⊢ ⊥ = (oc‘𝐾) |
polat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polat.m | ⊢ 𝑀 = (pmap‘𝐾) |
polat.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polatN | ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4833 | . . 3 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ⊆ 𝐴) | |
2 | polat.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
3 | polat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | polat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | polat.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
6 | 2, 3, 4, 5 | polvalN 39862 | . . 3 ⊢ ((𝐾 ∈ OL ∧ {𝑄} ⊆ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
7 | 1, 6 | sylan2 592 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
8 | 2fveq3 6925 | . . . . 5 ⊢ (𝑝 = 𝑄 → (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) | |
9 | 8 | iinxsng 5111 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
10 | 9 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
11 | 10 | ineq2d 4241 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝))) = (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄)))) |
12 | olop 39170 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
13 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 3 | atbase 39245 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
15 | 13, 2 | opoccl 39150 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
16 | 12, 14, 15 | syl2an 595 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
17 | 13, 3, 4 | pmapssat 39716 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
18 | 16, 17 | syldan 590 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
19 | sseqin2 4244 | . . 3 ⊢ ((𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) | |
20 | 18, 19 | sylib 218 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) |
21 | 7, 11, 20 | 3eqtrd 2784 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 {csn 4648 ∩ ciin 5016 ‘cfv 6573 Basecbs 17258 occoc 17319 OPcops 39128 OLcol 39130 Atomscatm 39219 pmapcpmap 39454 ⊥𝑃cpolN 39859 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oposet 39132 df-ol 39134 df-ats 39223 df-pmap 39461 df-polarityN 39860 |
This theorem is referenced by: 2polatN 39889 |
Copyright terms: Public domain | W3C validator |