Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polatN Structured version   Visualization version   GIF version

Theorem polatN 38791
Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polat.o βŠ₯ = (ocβ€˜πΎ)
polat.a 𝐴 = (Atomsβ€˜πΎ)
polat.m 𝑀 = (pmapβ€˜πΎ)
polat.p 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
Assertion
Ref Expression
polatN ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) β†’ (π‘ƒβ€˜{𝑄}) = (π‘€β€˜( βŠ₯ β€˜π‘„)))

Proof of Theorem polatN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 snssi 4811 . . 3 (𝑄 ∈ 𝐴 β†’ {𝑄} βŠ† 𝐴)
2 polat.o . . . 4 βŠ₯ = (ocβ€˜πΎ)
3 polat.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
4 polat.m . . . 4 𝑀 = (pmapβ€˜πΎ)
5 polat.p . . . 4 𝑃 = (βŠ₯π‘ƒβ€˜πΎ)
62, 3, 4, 5polvalN 38765 . . 3 ((𝐾 ∈ OL ∧ {𝑄} βŠ† 𝐴) β†’ (π‘ƒβ€˜{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (π‘€β€˜( βŠ₯ β€˜π‘))))
71, 6sylan2 594 . 2 ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) β†’ (π‘ƒβ€˜{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (π‘€β€˜( βŠ₯ β€˜π‘))))
8 2fveq3 6894 . . . . 5 (𝑝 = 𝑄 β†’ (π‘€β€˜( βŠ₯ β€˜π‘)) = (π‘€β€˜( βŠ₯ β€˜π‘„)))
98iinxsng 5091 . . . 4 (𝑄 ∈ 𝐴 β†’ ∩ 𝑝 ∈ {𝑄} (π‘€β€˜( βŠ₯ β€˜π‘)) = (π‘€β€˜( βŠ₯ β€˜π‘„)))
109adantl 483 . . 3 ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) β†’ ∩ 𝑝 ∈ {𝑄} (π‘€β€˜( βŠ₯ β€˜π‘)) = (π‘€β€˜( βŠ₯ β€˜π‘„)))
1110ineq2d 4212 . 2 ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) β†’ (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (π‘€β€˜( βŠ₯ β€˜π‘))) = (𝐴 ∩ (π‘€β€˜( βŠ₯ β€˜π‘„))))
12 olop 38073 . . . . 5 (𝐾 ∈ OL β†’ 𝐾 ∈ OP)
13 eqid 2733 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
1413, 3atbase 38148 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
1513, 2opoccl 38053 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ ( βŠ₯ β€˜π‘„) ∈ (Baseβ€˜πΎ))
1612, 14, 15syl2an 597 . . . 4 ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) β†’ ( βŠ₯ β€˜π‘„) ∈ (Baseβ€˜πΎ))
1713, 3, 4pmapssat 38619 . . . 4 ((𝐾 ∈ OL ∧ ( βŠ₯ β€˜π‘„) ∈ (Baseβ€˜πΎ)) β†’ (π‘€β€˜( βŠ₯ β€˜π‘„)) βŠ† 𝐴)
1816, 17syldan 592 . . 3 ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) β†’ (π‘€β€˜( βŠ₯ β€˜π‘„)) βŠ† 𝐴)
19 sseqin2 4215 . . 3 ((π‘€β€˜( βŠ₯ β€˜π‘„)) βŠ† 𝐴 ↔ (𝐴 ∩ (π‘€β€˜( βŠ₯ β€˜π‘„))) = (π‘€β€˜( βŠ₯ β€˜π‘„)))
2018, 19sylib 217 . 2 ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) β†’ (𝐴 ∩ (π‘€β€˜( βŠ₯ β€˜π‘„))) = (π‘€β€˜( βŠ₯ β€˜π‘„)))
217, 11, 203eqtrd 2777 1 ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) β†’ (π‘ƒβ€˜{𝑄}) = (π‘€β€˜( βŠ₯ β€˜π‘„)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   ∩ cin 3947   βŠ† wss 3948  {csn 4628  βˆ© ciin 4998  β€˜cfv 6541  Basecbs 17141  occoc 17202  OPcops 38031  OLcol 38033  Atomscatm 38122  pmapcpmap 38357  βŠ₯𝑃cpolN 38762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7409  df-oposet 38035  df-ol 38037  df-ats 38126  df-pmap 38364  df-polarityN 38763
This theorem is referenced by:  2polatN  38792
  Copyright terms: Public domain W3C validator