Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > polatN | Structured version Visualization version GIF version |
Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
polat.o | ⊢ ⊥ = (oc‘𝐾) |
polat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
polat.m | ⊢ 𝑀 = (pmap‘𝐾) |
polat.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
Ref | Expression |
---|---|
polatN | ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4752 | . . 3 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ⊆ 𝐴) | |
2 | polat.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
3 | polat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | polat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
5 | polat.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
6 | 2, 3, 4, 5 | polvalN 38145 | . . 3 ⊢ ((𝐾 ∈ OL ∧ {𝑄} ⊆ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
7 | 1, 6 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
8 | 2fveq3 6816 | . . . . 5 ⊢ (𝑝 = 𝑄 → (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) | |
9 | 8 | iinxsng 5029 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
10 | 9 | adantl 482 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
11 | 10 | ineq2d 4156 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝))) = (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄)))) |
12 | olop 37453 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
13 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 3 | atbase 37528 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
15 | 13, 2 | opoccl 37433 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
16 | 12, 14, 15 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
17 | 13, 3, 4 | pmapssat 37999 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
18 | 16, 17 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
19 | sseqin2 4159 | . . 3 ⊢ ((𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) | |
20 | 18, 19 | sylib 217 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) |
21 | 7, 11, 20 | 3eqtrd 2780 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∩ cin 3895 ⊆ wss 3896 {csn 4570 ∩ ciin 4937 ‘cfv 6465 Basecbs 16986 occoc 17044 OPcops 37411 OLcol 37413 Atomscatm 37502 pmapcpmap 37737 ⊥𝑃cpolN 38142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oposet 37415 df-ol 37417 df-ats 37506 df-pmap 37744 df-polarityN 38143 |
This theorem is referenced by: 2polatN 38172 |
Copyright terms: Public domain | W3C validator |