Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polatN Structured version   Visualization version   GIF version

Theorem polatN 39932
Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polat.o = (oc‘𝐾)
polat.a 𝐴 = (Atoms‘𝐾)
polat.m 𝑀 = (pmap‘𝐾)
polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polatN ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝑀‘( 𝑄)))

Proof of Theorem polatN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 snssi 4775 . . 3 (𝑄𝐴 → {𝑄} ⊆ 𝐴)
2 polat.o . . . 4 = (oc‘𝐾)
3 polat.a . . . 4 𝐴 = (Atoms‘𝐾)
4 polat.m . . . 4 𝑀 = (pmap‘𝐾)
5 polat.p . . . 4 𝑃 = (⊥𝑃𝐾)
62, 3, 4, 5polvalN 39906 . . 3 ((𝐾 ∈ OL ∧ {𝑄} ⊆ 𝐴) → (𝑃‘{𝑄}) = (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))))
71, 6sylan2 593 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))))
8 2fveq3 6866 . . . . 5 (𝑝 = 𝑄 → (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
98iinxsng 5055 . . . 4 (𝑄𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
109adantl 481 . . 3 ((𝐾 ∈ OL ∧ 𝑄𝐴) → 𝑝 ∈ {𝑄} (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
1110ineq2d 4186 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))) = (𝐴 ∩ (𝑀‘( 𝑄))))
12 olop 39214 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
13 eqid 2730 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 3atbase 39289 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1513, 2opoccl 39194 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ( 𝑄) ∈ (Base‘𝐾))
1612, 14, 15syl2an 596 . . . 4 ((𝐾 ∈ OL ∧ 𝑄𝐴) → ( 𝑄) ∈ (Base‘𝐾))
1713, 3, 4pmapssat 39760 . . . 4 ((𝐾 ∈ OL ∧ ( 𝑄) ∈ (Base‘𝐾)) → (𝑀‘( 𝑄)) ⊆ 𝐴)
1816, 17syldan 591 . . 3 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑀‘( 𝑄)) ⊆ 𝐴)
19 sseqin2 4189 . . 3 ((𝑀‘( 𝑄)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑀‘( 𝑄))) = (𝑀‘( 𝑄)))
2018, 19sylib 218 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝐴 ∩ (𝑀‘( 𝑄))) = (𝑀‘( 𝑄)))
217, 11, 203eqtrd 2769 1 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝑀‘( 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cin 3916  wss 3917  {csn 4592   ciin 4959  cfv 6514  Basecbs 17186  occoc 17235  OPcops 39172  OLcol 39174  Atomscatm 39263  pmapcpmap 39498  𝑃cpolN 39903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oposet 39176  df-ol 39178  df-ats 39267  df-pmap 39505  df-polarityN 39904
This theorem is referenced by:  2polatN  39933
  Copyright terms: Public domain W3C validator