Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polatN Structured version   Visualization version   GIF version

Theorem polatN 38171
Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polat.o = (oc‘𝐾)
polat.a 𝐴 = (Atoms‘𝐾)
polat.m 𝑀 = (pmap‘𝐾)
polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polatN ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝑀‘( 𝑄)))

Proof of Theorem polatN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 snssi 4752 . . 3 (𝑄𝐴 → {𝑄} ⊆ 𝐴)
2 polat.o . . . 4 = (oc‘𝐾)
3 polat.a . . . 4 𝐴 = (Atoms‘𝐾)
4 polat.m . . . 4 𝑀 = (pmap‘𝐾)
5 polat.p . . . 4 𝑃 = (⊥𝑃𝐾)
62, 3, 4, 5polvalN 38145 . . 3 ((𝐾 ∈ OL ∧ {𝑄} ⊆ 𝐴) → (𝑃‘{𝑄}) = (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))))
71, 6sylan2 593 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))))
8 2fveq3 6816 . . . . 5 (𝑝 = 𝑄 → (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
98iinxsng 5029 . . . 4 (𝑄𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
109adantl 482 . . 3 ((𝐾 ∈ OL ∧ 𝑄𝐴) → 𝑝 ∈ {𝑄} (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
1110ineq2d 4156 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))) = (𝐴 ∩ (𝑀‘( 𝑄))))
12 olop 37453 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
13 eqid 2736 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 3atbase 37528 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1513, 2opoccl 37433 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ( 𝑄) ∈ (Base‘𝐾))
1612, 14, 15syl2an 596 . . . 4 ((𝐾 ∈ OL ∧ 𝑄𝐴) → ( 𝑄) ∈ (Base‘𝐾))
1713, 3, 4pmapssat 37999 . . . 4 ((𝐾 ∈ OL ∧ ( 𝑄) ∈ (Base‘𝐾)) → (𝑀‘( 𝑄)) ⊆ 𝐴)
1816, 17syldan 591 . . 3 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑀‘( 𝑄)) ⊆ 𝐴)
19 sseqin2 4159 . . 3 ((𝑀‘( 𝑄)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑀‘( 𝑄))) = (𝑀‘( 𝑄)))
2018, 19sylib 217 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝐴 ∩ (𝑀‘( 𝑄))) = (𝑀‘( 𝑄)))
217, 11, 203eqtrd 2780 1 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝑀‘( 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cin 3895  wss 3896  {csn 4570   ciin 4937  cfv 6465  Basecbs 16986  occoc 17044  OPcops 37411  OLcol 37413  Atomscatm 37502  pmapcpmap 37737  𝑃cpolN 38142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-iin 4939  df-br 5087  df-opab 5149  df-mpt 5170  df-id 5506  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oposet 37415  df-ol 37417  df-ats 37506  df-pmap 37744  df-polarityN 38143
This theorem is referenced by:  2polatN  38172
  Copyright terms: Public domain W3C validator