| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > polatN | Structured version Visualization version GIF version | ||
| Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| polat.o | ⊢ ⊥ = (oc‘𝐾) |
| polat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| polat.m | ⊢ 𝑀 = (pmap‘𝐾) |
| polat.p | ⊢ 𝑃 = (⊥𝑃‘𝐾) |
| Ref | Expression |
|---|---|
| polatN | ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4757 | . . 3 ⊢ (𝑄 ∈ 𝐴 → {𝑄} ⊆ 𝐴) | |
| 2 | polat.o | . . . 4 ⊢ ⊥ = (oc‘𝐾) | |
| 3 | polat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 4 | polat.m | . . . 4 ⊢ 𝑀 = (pmap‘𝐾) | |
| 5 | polat.p | . . . 4 ⊢ 𝑃 = (⊥𝑃‘𝐾) | |
| 6 | 2, 3, 4, 5 | polvalN 40003 | . . 3 ⊢ ((𝐾 ∈ OL ∧ {𝑄} ⊆ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
| 7 | 1, 6 | sylan2 593 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)))) |
| 8 | 2fveq3 6827 | . . . . 5 ⊢ (𝑝 = 𝑄 → (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) | |
| 9 | 8 | iinxsng 5034 | . . . 4 ⊢ (𝑄 ∈ 𝐴 → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
| 10 | 9 | adantl 481 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝)) = (𝑀‘( ⊥ ‘𝑄))) |
| 11 | 10 | ineq2d 4167 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ ∩ 𝑝 ∈ {𝑄} (𝑀‘( ⊥ ‘𝑝))) = (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄)))) |
| 12 | olop 39312 | . . . . 5 ⊢ (𝐾 ∈ OL → 𝐾 ∈ OP) | |
| 13 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | 13, 3 | atbase 39387 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 15 | 13, 2 | opoccl 39292 | . . . . 5 ⊢ ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
| 16 | 12, 14, 15 | syl2an 596 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) |
| 17 | 13, 3, 4 | pmapssat 39857 | . . . 4 ⊢ ((𝐾 ∈ OL ∧ ( ⊥ ‘𝑄) ∈ (Base‘𝐾)) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
| 18 | 16, 17 | syldan 591 | . . 3 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴) |
| 19 | sseqin2 4170 | . . 3 ⊢ ((𝑀‘( ⊥ ‘𝑄)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) | |
| 20 | 18, 19 | sylib 218 | . 2 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝐴 ∩ (𝑀‘( ⊥ ‘𝑄))) = (𝑀‘( ⊥ ‘𝑄))) |
| 21 | 7, 11, 20 | 3eqtrd 2770 | 1 ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3896 ⊆ wss 3897 {csn 4573 ∩ ciin 4940 ‘cfv 6481 Basecbs 17120 occoc 17169 OPcops 39270 OLcol 39272 Atomscatm 39361 pmapcpmap 39595 ⊥𝑃cpolN 40000 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oposet 39274 df-ol 39276 df-ats 39365 df-pmap 39602 df-polarityN 40001 |
| This theorem is referenced by: 2polatN 40030 |
| Copyright terms: Public domain | W3C validator |