Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  polatN Structured version   Visualization version   GIF version

Theorem polatN 39914
Description: The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
polat.o = (oc‘𝐾)
polat.a 𝐴 = (Atoms‘𝐾)
polat.m 𝑀 = (pmap‘𝐾)
polat.p 𝑃 = (⊥𝑃𝐾)
Assertion
Ref Expression
polatN ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝑀‘( 𝑄)))

Proof of Theorem polatN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 snssi 4813 . . 3 (𝑄𝐴 → {𝑄} ⊆ 𝐴)
2 polat.o . . . 4 = (oc‘𝐾)
3 polat.a . . . 4 𝐴 = (Atoms‘𝐾)
4 polat.m . . . 4 𝑀 = (pmap‘𝐾)
5 polat.p . . . 4 𝑃 = (⊥𝑃𝐾)
62, 3, 4, 5polvalN 39888 . . 3 ((𝐾 ∈ OL ∧ {𝑄} ⊆ 𝐴) → (𝑃‘{𝑄}) = (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))))
71, 6sylan2 593 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))))
8 2fveq3 6912 . . . . 5 (𝑝 = 𝑄 → (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
98iinxsng 5093 . . . 4 (𝑄𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
109adantl 481 . . 3 ((𝐾 ∈ OL ∧ 𝑄𝐴) → 𝑝 ∈ {𝑄} (𝑀‘( 𝑝)) = (𝑀‘( 𝑄)))
1110ineq2d 4228 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝐴 𝑝 ∈ {𝑄} (𝑀‘( 𝑝))) = (𝐴 ∩ (𝑀‘( 𝑄))))
12 olop 39196 . . . . 5 (𝐾 ∈ OL → 𝐾 ∈ OP)
13 eqid 2735 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 3atbase 39271 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1513, 2opoccl 39176 . . . . 5 ((𝐾 ∈ OP ∧ 𝑄 ∈ (Base‘𝐾)) → ( 𝑄) ∈ (Base‘𝐾))
1612, 14, 15syl2an 596 . . . 4 ((𝐾 ∈ OL ∧ 𝑄𝐴) → ( 𝑄) ∈ (Base‘𝐾))
1713, 3, 4pmapssat 39742 . . . 4 ((𝐾 ∈ OL ∧ ( 𝑄) ∈ (Base‘𝐾)) → (𝑀‘( 𝑄)) ⊆ 𝐴)
1816, 17syldan 591 . . 3 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑀‘( 𝑄)) ⊆ 𝐴)
19 sseqin2 4231 . . 3 ((𝑀‘( 𝑄)) ⊆ 𝐴 ↔ (𝐴 ∩ (𝑀‘( 𝑄))) = (𝑀‘( 𝑄)))
2018, 19sylib 218 . 2 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝐴 ∩ (𝑀‘( 𝑄))) = (𝑀‘( 𝑄)))
217, 11, 203eqtrd 2779 1 ((𝐾 ∈ OL ∧ 𝑄𝐴) → (𝑃‘{𝑄}) = (𝑀‘( 𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  cin 3962  wss 3963  {csn 4631   ciin 4997  cfv 6563  Basecbs 17245  occoc 17306  OPcops 39154  OLcol 39156  Atomscatm 39245  pmapcpmap 39480  𝑃cpolN 39885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oposet 39158  df-ol 39160  df-ats 39249  df-pmap 39487  df-polarityN 39886
This theorem is referenced by:  2polatN  39915
  Copyright terms: Public domain W3C validator