Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinxprg Structured version   Visualization version   GIF version

Theorem iinxprg 4974
 Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.)
Hypotheses
Ref Expression
iinxprg.1 (𝑥 = 𝐴𝐶 = 𝐷)
iinxprg.2 (𝑥 = 𝐵𝐶 = 𝐸)
Assertion
Ref Expression
iinxprg ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐷   𝑥,𝐸
Allowed substitution hints:   𝐶(𝑥)   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem iinxprg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 iinxprg.1 . . . . 5 (𝑥 = 𝐴𝐶 = 𝐷)
21eleq2d 2838 . . . 4 (𝑥 = 𝐴 → (𝑦𝐶𝑦𝐷))
3 iinxprg.2 . . . . 5 (𝑥 = 𝐵𝐶 = 𝐸)
43eleq2d 2838 . . . 4 (𝑥 = 𝐵 → (𝑦𝐶𝑦𝐸))
52, 4ralprg 4587 . . 3 ((𝐴𝑉𝐵𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶 ↔ (𝑦𝐷𝑦𝐸)))
65abbidv 2823 . 2 ((𝐴𝑉𝐵𝑊) → {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶} = {𝑦 ∣ (𝑦𝐷𝑦𝐸)})
7 df-iin 4884 . 2 𝑥 ∈ {𝐴, 𝐵}𝐶 = {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦𝐶}
8 df-in 3866 . 2 (𝐷𝐸) = {𝑦 ∣ (𝑦𝐷𝑦𝐸)}
96, 7, 83eqtr4g 2819 1 ((𝐴𝑉𝐵𝑊) → 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112  {cab 2736  ∀wral 3071   ∩ cin 3858  {cpr 4522  ∩ ciin 4882 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-12 2176  ax-ext 2730 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2071  df-clab 2737  df-cleq 2751  df-clel 2831  df-ral 3076  df-v 3412  df-sbc 3698  df-un 3864  df-in 3866  df-sn 4521  df-pr 4523  df-iin 4884 This theorem is referenced by:  pmapmeet  37339  diameetN  38622  dihmeetlem2N  38865  dihmeetcN  38868  dihmeet  38909
 Copyright terms: Public domain W3C validator