Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iinxprg | Structured version Visualization version GIF version |
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012.) |
Ref | Expression |
---|---|
iinxprg.1 | ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) |
iinxprg.2 | ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
iinxprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∩ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iinxprg.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) | |
2 | 1 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷)) |
3 | iinxprg.2 | . . . . 5 ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) | |
4 | 3 | eleq2d 2824 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐸)) |
5 | 2, 4 | ralprg 4627 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ {𝐴, 𝐵}𝑦 ∈ 𝐶 ↔ (𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸))) |
6 | 5 | abbidv 2808 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦 ∈ 𝐶} = {𝑦 ∣ (𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸)}) |
7 | df-iin 4924 | . 2 ⊢ ∩ 𝑥 ∈ {𝐴, 𝐵}𝐶 = {𝑦 ∣ ∀𝑥 ∈ {𝐴, 𝐵}𝑦 ∈ 𝐶} | |
8 | df-in 3890 | . 2 ⊢ (𝐷 ∩ 𝐸) = {𝑦 ∣ (𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸)} | |
9 | 6, 7, 8 | 3eqtr4g 2804 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∩ 𝑥 ∈ {𝐴, 𝐵}𝐶 = (𝐷 ∩ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∩ cin 3882 {cpr 4560 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-un 3888 df-in 3890 df-sn 4559 df-pr 4561 df-iin 4924 |
This theorem is referenced by: pmapmeet 37714 diameetN 38997 dihmeetlem2N 39240 dihmeetcN 39243 dihmeet 39284 |
Copyright terms: Public domain | W3C validator |