Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inelros Structured version   Visualization version   GIF version

Theorem inelros 34258
Description: A ring of sets is closed under intersection. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypothesis
Ref Expression
isros.1 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
Assertion
Ref Expression
inelros ((𝑆𝑄𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑠)   𝐵(𝑥,𝑦,𝑠)   𝑄(𝑥,𝑦,𝑠)   𝑂(𝑥,𝑦)

Proof of Theorem inelros
StepHypRef Expression
1 dfin4 4227 . 2 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
2 isros.1 . . . 4 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
32difelros 34257 . . 3 ((𝑆𝑄𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
42difelros 34257 . . 3 ((𝑆𝑄𝐴𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → (𝐴 ∖ (𝐴𝐵)) ∈ 𝑆)
53, 4syld3an3 1411 . 2 ((𝑆𝑄𝐴𝑆𝐵𝑆) → (𝐴 ∖ (𝐴𝐵)) ∈ 𝑆)
61, 5eqeltrid 2837 1 ((𝑆𝑄𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048  {crab 3396  cdif 3895  cun 3896  cin 3897  c0 4282  𝒫 cpw 4551
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915
This theorem is referenced by:  rossros  34265
  Copyright terms: Public domain W3C validator