MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin4 Structured version   Visualization version   GIF version

Theorem dfin4 4297
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
dfin4 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))

Proof of Theorem dfin4
StepHypRef Expression
1 inss1 4258 . . 3 (𝐴𝐵) ⊆ 𝐴
2 dfss4 4288 . . 3 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵))
31, 2mpbi 230 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵)
4 difin 4291 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
54difeq2i 4146 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴 ∖ (𝐴𝐵))
63, 5eqtr3i 2770 1 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  cin 3975  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993
This theorem is referenced by:  indif  4299  cnvin  6176  imain  6663  resin  6884  elcls  23102  cmmbl  25588  mbfeqalem2  25696  itg1addlem4  25753  itg1addlem4OLD  25754  itg1addlem5  25755  suppovss  32697  inelsiga  34099  inelros  34137  topdifinffinlem  37313  poimirlem9  37589  mblfinlem4  37620  ismblfin  37621  cnambfre  37628  stoweidlem50  45971  saliinclf  46247  sge0fodjrnlem  46337  meadjiunlem  46386  caragendifcl  46435
  Copyright terms: Public domain W3C validator