| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| dfin4 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4196 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | dfss4 4228 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵) |
| 4 | difin 4231 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 5 | 4 | difeq2i 4082 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| 6 | 3, 5 | eqtr3i 2754 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3908 ∩ cin 3910 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-in 3918 df-ss 3928 |
| This theorem is referenced by: indif 4239 cnvin 6105 imain 6585 resin 6804 elcls 22936 cmmbl 25411 mbfeqalem2 25519 itg1addlem4 25576 itg1addlem5 25577 suppovss 32577 inelsiga 34098 inelros 34136 topdifinffinlem 37308 poimirlem9 37596 mblfinlem4 37627 ismblfin 37628 cnambfre 37635 stoweidlem50 46021 saliinclf 46297 sge0fodjrnlem 46387 meadjiunlem 46436 caragendifcl 46485 |
| Copyright terms: Public domain | W3C validator |