| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| dfin4 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4203 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | dfss4 4235 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵) |
| 4 | difin 4238 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 5 | 4 | difeq2i 4089 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| 6 | 3, 5 | eqtr3i 2755 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 |
| This theorem is referenced by: indif 4246 cnvin 6120 imain 6604 resin 6825 elcls 22967 cmmbl 25442 mbfeqalem2 25550 itg1addlem4 25607 itg1addlem5 25608 suppovss 32611 inelsiga 34132 inelros 34170 topdifinffinlem 37342 poimirlem9 37630 mblfinlem4 37661 ismblfin 37662 cnambfre 37669 stoweidlem50 46055 saliinclf 46331 sge0fodjrnlem 46421 meadjiunlem 46470 caragendifcl 46519 |
| Copyright terms: Public domain | W3C validator |