| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| dfin4 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4200 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | dfss4 4232 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵) |
| 4 | difin 4235 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 5 | 4 | difeq2i 4086 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| 6 | 3, 5 | eqtr3i 2754 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 |
| This theorem is referenced by: indif 4243 cnvin 6117 imain 6601 resin 6822 elcls 22960 cmmbl 25435 mbfeqalem2 25543 itg1addlem4 25600 itg1addlem5 25601 suppovss 32604 inelsiga 34125 inelros 34163 topdifinffinlem 37335 poimirlem9 37623 mblfinlem4 37654 ismblfin 37655 cnambfre 37662 stoweidlem50 46048 saliinclf 46324 sge0fodjrnlem 46414 meadjiunlem 46463 caragendifcl 46512 |
| Copyright terms: Public domain | W3C validator |