MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin4 Structured version   Visualization version   GIF version

Theorem dfin4 4198
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
dfin4 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))

Proof of Theorem dfin4
StepHypRef Expression
1 inss1 4159 . . 3 (𝐴𝐵) ⊆ 𝐴
2 dfss4 4189 . . 3 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵))
31, 2mpbi 229 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵)
4 difin 4192 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
54difeq2i 4050 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴 ∖ (𝐴𝐵))
63, 5eqtr3i 2768 1 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3880  cin 3882  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900
This theorem is referenced by:  indif  4200  cnvin  6037  imain  6503  resin  6721  elcls  22132  cmmbl  24603  mbfeqalem2  24711  itg1addlem4  24768  itg1addlem4OLD  24769  itg1addlem5  24770  suppovss  30919  inelsiga  32003  inelros  32041  topdifinffinlem  35445  poimirlem9  35713  mblfinlem4  35744  ismblfin  35745  cnambfre  35752  stoweidlem50  43481  saliincl  43756  sge0fodjrnlem  43844  meadjiunlem  43893  caragendifcl  43942
  Copyright terms: Public domain W3C validator