Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfin4 | Structured version Visualization version GIF version |
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
dfin4 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4159 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | dfss4 4189 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵) |
4 | difin 4192 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
5 | 4 | difeq2i 4050 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
6 | 3, 5 | eqtr3i 2768 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 |
This theorem is referenced by: indif 4200 cnvin 6037 imain 6503 resin 6721 elcls 22132 cmmbl 24603 mbfeqalem2 24711 itg1addlem4 24768 itg1addlem4OLD 24769 itg1addlem5 24770 suppovss 30919 inelsiga 32003 inelros 32041 topdifinffinlem 35445 poimirlem9 35713 mblfinlem4 35744 ismblfin 35745 cnambfre 35752 stoweidlem50 43481 saliincl 43756 sge0fodjrnlem 43844 meadjiunlem 43893 caragendifcl 43942 |
Copyright terms: Public domain | W3C validator |