![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfin4 | Structured version Visualization version GIF version |
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
dfin4 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4227 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | dfss4 4257 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵) |
4 | difin 4260 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
5 | 4 | difeq2i 4118 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
6 | 3, 5 | eqtr3i 2762 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∖ cdif 3944 ∩ cin 3946 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-in 3954 df-ss 3964 |
This theorem is referenced by: indif 4268 cnvin 6141 imain 6630 resin 6852 elcls 22568 cmmbl 25042 mbfeqalem2 25150 itg1addlem4 25207 itg1addlem4OLD 25208 itg1addlem5 25209 suppovss 31893 inelsiga 33121 inelros 33159 topdifinffinlem 36216 poimirlem9 36485 mblfinlem4 36516 ismblfin 36517 cnambfre 36524 stoweidlem50 44752 saliinclf 45028 sge0fodjrnlem 45118 meadjiunlem 45167 caragendifcl 45216 |
Copyright terms: Public domain | W3C validator |