| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfin4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
| Ref | Expression |
|---|---|
| dfin4 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4186 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 2 | dfss4 4218 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | mpbi 230 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵) |
| 4 | difin 4221 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
| 5 | 4 | difeq2i 4072 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| 6 | 3, 5 | eqtr3i 2758 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 |
| This theorem is referenced by: indif 4229 cnvin 6099 imain 6574 resin 6793 elcls 23008 cmmbl 25482 mbfeqalem2 25590 itg1addlem4 25647 itg1addlem5 25648 suppovss 32686 inelsiga 34220 inelros 34258 topdifinffinlem 37464 poimirlem9 37742 mblfinlem4 37773 ismblfin 37774 cnambfre 37781 stoweidlem50 46210 saliinclf 46486 sge0fodjrnlem 46576 meadjiunlem 46625 caragendifcl 46674 |
| Copyright terms: Public domain | W3C validator |