MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin4 Structured version   Visualization version   GIF version

Theorem dfin4 4223
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
dfin4 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))

Proof of Theorem dfin4
StepHypRef Expression
1 inss1 4182 . . 3 (𝐴𝐵) ⊆ 𝐴
2 dfss4 4214 . . 3 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵))
31, 2mpbi 230 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵)
4 difin 4217 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
54difeq2i 4068 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴 ∖ (𝐴𝐵))
63, 5eqtr3i 2756 1 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3894  cin 3896  wss 3897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-in 3904  df-ss 3914
This theorem is referenced by:  indif  4225  cnvin  6086  imain  6561  resin  6780  elcls  22983  cmmbl  25457  mbfeqalem2  25565  itg1addlem4  25622  itg1addlem5  25623  suppovss  32654  inelsiga  34140  inelros  34178  topdifinffinlem  37381  poimirlem9  37669  mblfinlem4  37700  ismblfin  37701  cnambfre  37708  stoweidlem50  46088  saliinclf  46364  sge0fodjrnlem  46454  meadjiunlem  46503  caragendifcl  46552
  Copyright terms: Public domain W3C validator