Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfin4 | Structured version Visualization version GIF version |
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
dfin4 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4162 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | dfss4 4192 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | mpbi 229 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵) |
4 | difin 4195 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
5 | 4 | difeq2i 4053 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
6 | 3, 5 | eqtr3i 2768 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3883 ∩ cin 3885 ⊆ wss 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3431 df-dif 3889 df-in 3893 df-ss 3903 |
This theorem is referenced by: indif 4203 cnvin 6041 imain 6511 resin 6730 elcls 22234 cmmbl 24708 mbfeqalem2 24816 itg1addlem4 24873 itg1addlem4OLD 24874 itg1addlem5 24875 suppovss 31025 inelsiga 32111 inelros 32149 topdifinffinlem 35526 poimirlem9 35794 mblfinlem4 35825 ismblfin 35826 cnambfre 35833 stoweidlem50 43572 saliincl 43847 sge0fodjrnlem 43935 meadjiunlem 43984 caragendifcl 44033 |
Copyright terms: Public domain | W3C validator |