MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin4 Structured version   Visualization version   GIF version

Theorem dfin4 4201
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
dfin4 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))

Proof of Theorem dfin4
StepHypRef Expression
1 inss1 4162 . . 3 (𝐴𝐵) ⊆ 𝐴
2 dfss4 4192 . . 3 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵))
31, 2mpbi 229 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵)
4 difin 4195 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
54difeq2i 4053 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴 ∖ (𝐴𝐵))
63, 5eqtr3i 2768 1 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cdif 3883  cin 3885  wss 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3431  df-dif 3889  df-in 3893  df-ss 3903
This theorem is referenced by:  indif  4203  cnvin  6041  imain  6511  resin  6730  elcls  22234  cmmbl  24708  mbfeqalem2  24816  itg1addlem4  24873  itg1addlem4OLD  24874  itg1addlem5  24875  suppovss  31025  inelsiga  32111  inelros  32149  topdifinffinlem  35526  poimirlem9  35794  mblfinlem4  35825  ismblfin  35826  cnambfre  35833  stoweidlem50  43572  saliincl  43847  sge0fodjrnlem  43935  meadjiunlem  43984  caragendifcl  44033
  Copyright terms: Public domain W3C validator