MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfin4 Structured version   Visualization version   GIF version

Theorem dfin4 4227
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
dfin4 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))

Proof of Theorem dfin4
StepHypRef Expression
1 inss1 4186 . . 3 (𝐴𝐵) ⊆ 𝐴
2 dfss4 4218 . . 3 ((𝐴𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵))
31, 2mpbi 230 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴𝐵)
4 difin 4221 . . 3 (𝐴 ∖ (𝐴𝐵)) = (𝐴𝐵)
54difeq2i 4072 . 2 (𝐴 ∖ (𝐴 ∖ (𝐴𝐵))) = (𝐴 ∖ (𝐴𝐵))
63, 5eqtr3i 2758 1 (𝐴𝐵) = (𝐴 ∖ (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3895  cin 3897  wss 3898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-in 3905  df-ss 3915
This theorem is referenced by:  indif  4229  cnvin  6099  imain  6574  resin  6793  elcls  23008  cmmbl  25482  mbfeqalem2  25590  itg1addlem4  25647  itg1addlem5  25648  suppovss  32686  inelsiga  34220  inelros  34258  topdifinffinlem  37464  poimirlem9  37742  mblfinlem4  37773  ismblfin  37774  cnambfre  37781  stoweidlem50  46210  saliinclf  46486  sge0fodjrnlem  46576  meadjiunlem  46625  caragendifcl  46674
  Copyright terms: Public domain W3C validator