![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfin4 | Structured version Visualization version GIF version |
Description: Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
Ref | Expression |
---|---|
dfin4 | ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4057 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
2 | dfss4 4088 | . . 3 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐴 ↔ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | mpbi 222 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∩ 𝐵) |
4 | difin 4091 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | |
5 | 4 | difeq2i 3952 | . 2 ⊢ (𝐴 ∖ (𝐴 ∖ (𝐴 ∩ 𝐵))) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
6 | 3, 5 | eqtr3i 2851 | 1 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∖ cdif 3795 ∩ cin 3797 ⊆ wss 3798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rab 3126 df-v 3416 df-dif 3801 df-in 3805 df-ss 3812 |
This theorem is referenced by: indif 4099 cnvin 5781 imain 6207 resin 6399 elcls 21248 cmmbl 23700 mbfeqalem2 23808 itg1addlem4 23865 itg1addlem5 23866 inelsiga 30743 inelros 30781 topdifinffinlem 33740 poimirlem9 33962 mblfinlem4 33993 ismblfin 33994 cnambfre 34001 stoweidlem50 41061 saliincl 41336 sge0fodjrnlem 41424 meadjiunlem 41473 caragendifcl 41522 |
Copyright terms: Public domain | W3C validator |