Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunelros Structured version   Visualization version   GIF version

Theorem fiunelros 32042
Description: A ring of sets is closed under finite union. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
isros.1 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
fiunelros.1 (𝜑𝑆𝑄)
fiunelros.2 (𝜑𝑁 ∈ ℕ)
fiunelros.3 ((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆)
Assertion
Ref Expression
fiunelros (𝜑 𝑘 ∈ (1..^𝑁)𝐵𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦   𝑘,𝑁   𝑆,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐵(𝑥,𝑦,𝑘,𝑠)   𝑄(𝑥,𝑦,𝑘,𝑠)   𝑁(𝑥,𝑦,𝑠)   𝑂(𝑥,𝑦,𝑘)

Proof of Theorem fiunelros
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fiunelros.2 . 2 (𝜑𝑁 ∈ ℕ)
2 simpr 484 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
32nnred 11918 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
43leidd 11471 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝑁𝑁)
5 breq1 5073 . . . . 5 (𝑛 = 1 → (𝑛𝑁 ↔ 1 ≤ 𝑁))
6 oveq2 7263 . . . . . . 7 (𝑛 = 1 → (1..^𝑛) = (1..^1))
76iuneq1d 4948 . . . . . 6 (𝑛 = 1 → 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^1)𝐵)
87eleq1d 2823 . . . . 5 (𝑛 = 1 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^1)𝐵𝑆))
95, 8imbi12d 344 . . . 4 (𝑛 = 1 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (1 ≤ 𝑁 𝑘 ∈ (1..^1)𝐵𝑆)))
10 breq1 5073 . . . . 5 (𝑛 = 𝑖 → (𝑛𝑁𝑖𝑁))
11 oveq2 7263 . . . . . . 7 (𝑛 = 𝑖 → (1..^𝑛) = (1..^𝑖))
1211iuneq1d 4948 . . . . . 6 (𝑛 = 𝑖 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑖)𝐵)
1312eleq1d 2823 . . . . 5 (𝑛 = 𝑖 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^𝑖)𝐵𝑆))
1410, 13imbi12d 344 . . . 4 (𝑛 = 𝑖 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)))
15 breq1 5073 . . . . 5 (𝑛 = (𝑖 + 1) → (𝑛𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
16 oveq2 7263 . . . . . . 7 (𝑛 = (𝑖 + 1) → (1..^𝑛) = (1..^(𝑖 + 1)))
1716iuneq1d 4948 . . . . . 6 (𝑛 = (𝑖 + 1) → 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^(𝑖 + 1))𝐵)
1817eleq1d 2823 . . . . 5 (𝑛 = (𝑖 + 1) → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆))
1915, 18imbi12d 344 . . . 4 (𝑛 = (𝑖 + 1) → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ ((𝑖 + 1) ≤ 𝑁 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆)))
20 breq1 5073 . . . . 5 (𝑛 = 𝑁 → (𝑛𝑁𝑁𝑁))
21 oveq2 7263 . . . . . . 7 (𝑛 = 𝑁 → (1..^𝑛) = (1..^𝑁))
2221iuneq1d 4948 . . . . . 6 (𝑛 = 𝑁 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑁)𝐵)
2322eleq1d 2823 . . . . 5 (𝑛 = 𝑁 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^𝑁)𝐵𝑆))
2420, 23imbi12d 344 . . . 4 (𝑛 = 𝑁 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (𝑁𝑁 𝑘 ∈ (1..^𝑁)𝐵𝑆)))
25 fzo0 13339 . . . . . . . 8 (1..^1) = ∅
26 iuneq1 4937 . . . . . . . 8 ((1..^1) = ∅ → 𝑘 ∈ (1..^1)𝐵 = 𝑘 ∈ ∅ 𝐵)
2725, 26ax-mp 5 . . . . . . 7 𝑘 ∈ (1..^1)𝐵 = 𝑘 ∈ ∅ 𝐵
28 0iun 4988 . . . . . . 7 𝑘 ∈ ∅ 𝐵 = ∅
2927, 28eqtri 2766 . . . . . 6 𝑘 ∈ (1..^1)𝐵 = ∅
30 fiunelros.1 . . . . . . 7 (𝜑𝑆𝑄)
31 isros.1 . . . . . . . 8 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
32310elros 32038 . . . . . . 7 (𝑆𝑄 → ∅ ∈ 𝑆)
3330, 32syl 17 . . . . . 6 (𝜑 → ∅ ∈ 𝑆)
3429, 33eqeltrid 2843 . . . . 5 (𝜑 𝑘 ∈ (1..^1)𝐵𝑆)
3534a1d 25 . . . 4 (𝜑 → (1 ≤ 𝑁 𝑘 ∈ (1..^1)𝐵𝑆))
36 simpllr 772 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ ℕ)
37 fzosplitsn 13423 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘1) → (1..^(𝑖 + 1)) = ((1..^𝑖) ∪ {𝑖}))
38 nnuz 12550 . . . . . . . . . 10 ℕ = (ℤ‘1)
3937, 38eleq2s 2857 . . . . . . . . 9 (𝑖 ∈ ℕ → (1..^(𝑖 + 1)) = ((1..^𝑖) ∪ {𝑖}))
4039iuneq1d 4948 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵)
4136, 40syl 17 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵)
42 iunxun 5019 . . . . . . 7 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵 = ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵)
4341, 42eqtrdi 2795 . . . . . 6 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵))
4430ad3antrrr 726 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑆𝑄)
4536nnred 11918 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ ℝ)
461ad3antrrr 726 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ)
4746nnred 11918 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ)
48 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖 + 1) ≤ 𝑁)
49 nnltp1le 12306 . . . . . . . . . . 11 ((𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
5036, 46, 49syl2anc 583 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
5148, 50mpbird 256 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 < 𝑁)
5245, 47, 51ltled 11053 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖𝑁)
53 simplr 765 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆))
5452, 53mpd 15 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^𝑖)𝐵𝑆)
55 nfcsb1v 3853 . . . . . . . . . 10 𝑘𝑖 / 𝑘𝐵
56 csbeq1a 3842 . . . . . . . . . 10 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
5755, 56iunxsngf 5017 . . . . . . . . 9 (𝑖 ∈ ℕ → 𝑘 ∈ {𝑖}𝐵 = 𝑖 / 𝑘𝐵)
5836, 57syl 17 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ {𝑖}𝐵 = 𝑖 / 𝑘𝐵)
59 simplll 771 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝜑)
60 elfzo1 13365 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) ↔ (𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
6136, 46, 51, 60syl3anbrc 1341 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ (1..^𝑁))
62 nfv 1918 . . . . . . . . . . 11 𝑘(𝜑𝑖 ∈ (1..^𝑁))
63 nfcv 2906 . . . . . . . . . . . 12 𝑘𝑆
6455, 63nfel 2920 . . . . . . . . . . 11 𝑘𝑖 / 𝑘𝐵𝑆
6562, 64nfim 1900 . . . . . . . . . 10 𝑘((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)
66 eleq1w 2821 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 ∈ (1..^𝑁) ↔ 𝑖 ∈ (1..^𝑁)))
6766anbi2d 628 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝜑𝑘 ∈ (1..^𝑁)) ↔ (𝜑𝑖 ∈ (1..^𝑁))))
6856eleq1d 2823 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐵𝑆𝑖 / 𝑘𝐵𝑆))
6967, 68imbi12d 344 . . . . . . . . . 10 (𝑘 = 𝑖 → (((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆) ↔ ((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)))
70 fiunelros.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆)
7165, 69, 70chvarfv 2236 . . . . . . . . 9 ((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)
7259, 61, 71syl2anc 583 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 / 𝑘𝐵𝑆)
7358, 72eqeltrd 2839 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ {𝑖}𝐵𝑆)
7431unelros 32039 . . . . . . 7 ((𝑆𝑄 𝑘 ∈ (1..^𝑖)𝐵𝑆 𝑘 ∈ {𝑖}𝐵𝑆) → ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵) ∈ 𝑆)
7544, 54, 73, 74syl3anc 1369 . . . . . 6 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵) ∈ 𝑆)
7643, 75eqeltrd 2839 . . . . 5 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆)
7776ex 412 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) → ((𝑖 + 1) ≤ 𝑁 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆))
789, 14, 19, 24, 35, 77nnindd 11923 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝑁𝑁 𝑘 ∈ (1..^𝑁)𝐵𝑆))
794, 78mpd 15 . 2 ((𝜑𝑁 ∈ ℕ) → 𝑘 ∈ (1..^𝑁)𝐵𝑆)
801, 79mpdan 683 1 (𝜑 𝑘 ∈ (1..^𝑁)𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  csb 3828  cdif 3880  cun 3881  c0 4253  𝒫 cpw 4530  {csn 4558   ciun 4921   class class class wbr 5070  cfv 6418  (class class class)co 7255  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cn 11903  cuz 12511  ..^cfzo 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator