Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunelros Structured version   Visualization version   GIF version

Theorem fiunelros 32837
Description: A ring of sets is closed under finite union. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
isros.1 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
fiunelros.1 (𝜑𝑆𝑄)
fiunelros.2 (𝜑𝑁 ∈ ℕ)
fiunelros.3 ((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆)
Assertion
Ref Expression
fiunelros (𝜑 𝑘 ∈ (1..^𝑁)𝐵𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦   𝑘,𝑁   𝑆,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐵(𝑥,𝑦,𝑘,𝑠)   𝑄(𝑥,𝑦,𝑘,𝑠)   𝑁(𝑥,𝑦,𝑠)   𝑂(𝑥,𝑦,𝑘)

Proof of Theorem fiunelros
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fiunelros.2 . 2 (𝜑𝑁 ∈ ℕ)
2 simpr 486 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
32nnred 12176 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
43leidd 11729 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝑁𝑁)
5 breq1 5112 . . . . 5 (𝑛 = 1 → (𝑛𝑁 ↔ 1 ≤ 𝑁))
6 oveq2 7369 . . . . . . 7 (𝑛 = 1 → (1..^𝑛) = (1..^1))
76iuneq1d 4985 . . . . . 6 (𝑛 = 1 → 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^1)𝐵)
87eleq1d 2819 . . . . 5 (𝑛 = 1 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^1)𝐵𝑆))
95, 8imbi12d 345 . . . 4 (𝑛 = 1 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (1 ≤ 𝑁 𝑘 ∈ (1..^1)𝐵𝑆)))
10 breq1 5112 . . . . 5 (𝑛 = 𝑖 → (𝑛𝑁𝑖𝑁))
11 oveq2 7369 . . . . . . 7 (𝑛 = 𝑖 → (1..^𝑛) = (1..^𝑖))
1211iuneq1d 4985 . . . . . 6 (𝑛 = 𝑖 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑖)𝐵)
1312eleq1d 2819 . . . . 5 (𝑛 = 𝑖 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^𝑖)𝐵𝑆))
1410, 13imbi12d 345 . . . 4 (𝑛 = 𝑖 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)))
15 breq1 5112 . . . . 5 (𝑛 = (𝑖 + 1) → (𝑛𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
16 oveq2 7369 . . . . . . 7 (𝑛 = (𝑖 + 1) → (1..^𝑛) = (1..^(𝑖 + 1)))
1716iuneq1d 4985 . . . . . 6 (𝑛 = (𝑖 + 1) → 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^(𝑖 + 1))𝐵)
1817eleq1d 2819 . . . . 5 (𝑛 = (𝑖 + 1) → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆))
1915, 18imbi12d 345 . . . 4 (𝑛 = (𝑖 + 1) → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ ((𝑖 + 1) ≤ 𝑁 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆)))
20 breq1 5112 . . . . 5 (𝑛 = 𝑁 → (𝑛𝑁𝑁𝑁))
21 oveq2 7369 . . . . . . 7 (𝑛 = 𝑁 → (1..^𝑛) = (1..^𝑁))
2221iuneq1d 4985 . . . . . 6 (𝑛 = 𝑁 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑁)𝐵)
2322eleq1d 2819 . . . . 5 (𝑛 = 𝑁 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^𝑁)𝐵𝑆))
2420, 23imbi12d 345 . . . 4 (𝑛 = 𝑁 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (𝑁𝑁 𝑘 ∈ (1..^𝑁)𝐵𝑆)))
25 fzo0 13605 . . . . . . . 8 (1..^1) = ∅
26 iuneq1 4974 . . . . . . . 8 ((1..^1) = ∅ → 𝑘 ∈ (1..^1)𝐵 = 𝑘 ∈ ∅ 𝐵)
2725, 26ax-mp 5 . . . . . . 7 𝑘 ∈ (1..^1)𝐵 = 𝑘 ∈ ∅ 𝐵
28 0iun 5027 . . . . . . 7 𝑘 ∈ ∅ 𝐵 = ∅
2927, 28eqtri 2761 . . . . . 6 𝑘 ∈ (1..^1)𝐵 = ∅
30 fiunelros.1 . . . . . . 7 (𝜑𝑆𝑄)
31 isros.1 . . . . . . . 8 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
32310elros 32833 . . . . . . 7 (𝑆𝑄 → ∅ ∈ 𝑆)
3330, 32syl 17 . . . . . 6 (𝜑 → ∅ ∈ 𝑆)
3429, 33eqeltrid 2838 . . . . 5 (𝜑 𝑘 ∈ (1..^1)𝐵𝑆)
3534a1d 25 . . . 4 (𝜑 → (1 ≤ 𝑁 𝑘 ∈ (1..^1)𝐵𝑆))
36 simpllr 775 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ ℕ)
37 fzosplitsn 13689 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘1) → (1..^(𝑖 + 1)) = ((1..^𝑖) ∪ {𝑖}))
38 nnuz 12814 . . . . . . . . . 10 ℕ = (ℤ‘1)
3937, 38eleq2s 2852 . . . . . . . . 9 (𝑖 ∈ ℕ → (1..^(𝑖 + 1)) = ((1..^𝑖) ∪ {𝑖}))
4039iuneq1d 4985 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵)
4136, 40syl 17 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵)
42 iunxun 5058 . . . . . . 7 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵 = ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵)
4341, 42eqtrdi 2789 . . . . . 6 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵))
4430ad3antrrr 729 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑆𝑄)
4536nnred 12176 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ ℝ)
461ad3antrrr 729 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ)
4746nnred 12176 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ)
48 simpr 486 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖 + 1) ≤ 𝑁)
49 nnltp1le 12567 . . . . . . . . . . 11 ((𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
5036, 46, 49syl2anc 585 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
5148, 50mpbird 257 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 < 𝑁)
5245, 47, 51ltled 11311 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖𝑁)
53 simplr 768 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆))
5452, 53mpd 15 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^𝑖)𝐵𝑆)
55 nfcsb1v 3884 . . . . . . . . . 10 𝑘𝑖 / 𝑘𝐵
56 csbeq1a 3873 . . . . . . . . . 10 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
5755, 56iunxsngf 5056 . . . . . . . . 9 (𝑖 ∈ ℕ → 𝑘 ∈ {𝑖}𝐵 = 𝑖 / 𝑘𝐵)
5836, 57syl 17 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ {𝑖}𝐵 = 𝑖 / 𝑘𝐵)
59 simplll 774 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝜑)
60 elfzo1 13631 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) ↔ (𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
6136, 46, 51, 60syl3anbrc 1344 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ (1..^𝑁))
62 nfv 1918 . . . . . . . . . . 11 𝑘(𝜑𝑖 ∈ (1..^𝑁))
63 nfcv 2904 . . . . . . . . . . . 12 𝑘𝑆
6455, 63nfel 2918 . . . . . . . . . . 11 𝑘𝑖 / 𝑘𝐵𝑆
6562, 64nfim 1900 . . . . . . . . . 10 𝑘((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)
66 eleq1w 2817 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 ∈ (1..^𝑁) ↔ 𝑖 ∈ (1..^𝑁)))
6766anbi2d 630 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝜑𝑘 ∈ (1..^𝑁)) ↔ (𝜑𝑖 ∈ (1..^𝑁))))
6856eleq1d 2819 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐵𝑆𝑖 / 𝑘𝐵𝑆))
6967, 68imbi12d 345 . . . . . . . . . 10 (𝑘 = 𝑖 → (((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆) ↔ ((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)))
70 fiunelros.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆)
7165, 69, 70chvarfv 2234 . . . . . . . . 9 ((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)
7259, 61, 71syl2anc 585 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 / 𝑘𝐵𝑆)
7358, 72eqeltrd 2834 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ {𝑖}𝐵𝑆)
7431unelros 32834 . . . . . . 7 ((𝑆𝑄 𝑘 ∈ (1..^𝑖)𝐵𝑆 𝑘 ∈ {𝑖}𝐵𝑆) → ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵) ∈ 𝑆)
7544, 54, 73, 74syl3anc 1372 . . . . . 6 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵) ∈ 𝑆)
7643, 75eqeltrd 2834 . . . . 5 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆)
7776ex 414 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) → ((𝑖 + 1) ≤ 𝑁 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆))
789, 14, 19, 24, 35, 77nnindd 12181 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝑁𝑁 𝑘 ∈ (1..^𝑁)𝐵𝑆))
794, 78mpd 15 . 2 ((𝜑𝑁 ∈ ℕ) → 𝑘 ∈ (1..^𝑁)𝐵𝑆)
801, 79mpdan 686 1 (𝜑 𝑘 ∈ (1..^𝑁)𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3061  {crab 3406  csb 3859  cdif 3911  cun 3912  c0 4286  𝒫 cpw 4564  {csn 4590   ciun 4958   class class class wbr 5109  cfv 6500  (class class class)co 7361  1c1 11060   + caddc 11062   < clt 11197  cle 11198  cn 12161  cuz 12771  ..^cfzo 13576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434  df-fzo 13577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator