Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fiunelros Structured version   Visualization version   GIF version

Theorem fiunelros 34175
Description: A ring of sets is closed under finite union. (Contributed by Thierry Arnoux, 19-Jul-2020.)
Hypotheses
Ref Expression
isros.1 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
fiunelros.1 (𝜑𝑆𝑄)
fiunelros.2 (𝜑𝑁 ∈ ℕ)
fiunelros.3 ((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆)
Assertion
Ref Expression
fiunelros (𝜑 𝑘 ∈ (1..^𝑁)𝐵𝑆)
Distinct variable groups:   𝑂,𝑠   𝑆,𝑠,𝑥,𝑦   𝑘,𝑁   𝑆,𝑘   𝜑,𝑘
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑠)   𝐵(𝑥,𝑦,𝑘,𝑠)   𝑄(𝑥,𝑦,𝑘,𝑠)   𝑁(𝑥,𝑦,𝑠)   𝑂(𝑥,𝑦,𝑘)

Proof of Theorem fiunelros
Dummy variables 𝑖 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fiunelros.2 . 2 (𝜑𝑁 ∈ ℕ)
2 simpr 484 . . . . 5 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
32nnred 12281 . . . 4 ((𝜑𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
43leidd 11829 . . 3 ((𝜑𝑁 ∈ ℕ) → 𝑁𝑁)
5 breq1 5146 . . . . 5 (𝑛 = 1 → (𝑛𝑁 ↔ 1 ≤ 𝑁))
6 oveq2 7439 . . . . . . 7 (𝑛 = 1 → (1..^𝑛) = (1..^1))
76iuneq1d 5019 . . . . . 6 (𝑛 = 1 → 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^1)𝐵)
87eleq1d 2826 . . . . 5 (𝑛 = 1 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^1)𝐵𝑆))
95, 8imbi12d 344 . . . 4 (𝑛 = 1 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (1 ≤ 𝑁 𝑘 ∈ (1..^1)𝐵𝑆)))
10 breq1 5146 . . . . 5 (𝑛 = 𝑖 → (𝑛𝑁𝑖𝑁))
11 oveq2 7439 . . . . . . 7 (𝑛 = 𝑖 → (1..^𝑛) = (1..^𝑖))
1211iuneq1d 5019 . . . . . 6 (𝑛 = 𝑖 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑖)𝐵)
1312eleq1d 2826 . . . . 5 (𝑛 = 𝑖 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^𝑖)𝐵𝑆))
1410, 13imbi12d 344 . . . 4 (𝑛 = 𝑖 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)))
15 breq1 5146 . . . . 5 (𝑛 = (𝑖 + 1) → (𝑛𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
16 oveq2 7439 . . . . . . 7 (𝑛 = (𝑖 + 1) → (1..^𝑛) = (1..^(𝑖 + 1)))
1716iuneq1d 5019 . . . . . 6 (𝑛 = (𝑖 + 1) → 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^(𝑖 + 1))𝐵)
1817eleq1d 2826 . . . . 5 (𝑛 = (𝑖 + 1) → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆))
1915, 18imbi12d 344 . . . 4 (𝑛 = (𝑖 + 1) → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ ((𝑖 + 1) ≤ 𝑁 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆)))
20 breq1 5146 . . . . 5 (𝑛 = 𝑁 → (𝑛𝑁𝑁𝑁))
21 oveq2 7439 . . . . . . 7 (𝑛 = 𝑁 → (1..^𝑛) = (1..^𝑁))
2221iuneq1d 5019 . . . . . 6 (𝑛 = 𝑁 𝑘 ∈ (1..^𝑛)𝐵 = 𝑘 ∈ (1..^𝑁)𝐵)
2322eleq1d 2826 . . . . 5 (𝑛 = 𝑁 → ( 𝑘 ∈ (1..^𝑛)𝐵𝑆 𝑘 ∈ (1..^𝑁)𝐵𝑆))
2420, 23imbi12d 344 . . . 4 (𝑛 = 𝑁 → ((𝑛𝑁 𝑘 ∈ (1..^𝑛)𝐵𝑆) ↔ (𝑁𝑁 𝑘 ∈ (1..^𝑁)𝐵𝑆)))
25 fzo0 13723 . . . . . . . 8 (1..^1) = ∅
26 iuneq1 5008 . . . . . . . 8 ((1..^1) = ∅ → 𝑘 ∈ (1..^1)𝐵 = 𝑘 ∈ ∅ 𝐵)
2725, 26ax-mp 5 . . . . . . 7 𝑘 ∈ (1..^1)𝐵 = 𝑘 ∈ ∅ 𝐵
28 0iun 5063 . . . . . . 7 𝑘 ∈ ∅ 𝐵 = ∅
2927, 28eqtri 2765 . . . . . 6 𝑘 ∈ (1..^1)𝐵 = ∅
30 fiunelros.1 . . . . . . 7 (𝜑𝑆𝑄)
31 isros.1 . . . . . . . 8 𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}
32310elros 34171 . . . . . . 7 (𝑆𝑄 → ∅ ∈ 𝑆)
3330, 32syl 17 . . . . . 6 (𝜑 → ∅ ∈ 𝑆)
3429, 33eqeltrid 2845 . . . . 5 (𝜑 𝑘 ∈ (1..^1)𝐵𝑆)
3534a1d 25 . . . 4 (𝜑 → (1 ≤ 𝑁 𝑘 ∈ (1..^1)𝐵𝑆))
36 simpllr 776 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ ℕ)
37 fzosplitsn 13814 . . . . . . . . . 10 (𝑖 ∈ (ℤ‘1) → (1..^(𝑖 + 1)) = ((1..^𝑖) ∪ {𝑖}))
38 nnuz 12921 . . . . . . . . . 10 ℕ = (ℤ‘1)
3937, 38eleq2s 2859 . . . . . . . . 9 (𝑖 ∈ ℕ → (1..^(𝑖 + 1)) = ((1..^𝑖) ∪ {𝑖}))
4039iuneq1d 5019 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵)
4136, 40syl 17 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵)
42 iunxun 5094 . . . . . . 7 𝑘 ∈ ((1..^𝑖) ∪ {𝑖})𝐵 = ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵)
4341, 42eqtrdi 2793 . . . . . 6 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵 = ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵))
4430ad3antrrr 730 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑆𝑄)
4536nnred 12281 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ ℝ)
461ad3antrrr 730 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑁 ∈ ℕ)
4746nnred 12281 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑁 ∈ ℝ)
48 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖 + 1) ≤ 𝑁)
49 nnltp1le 12674 . . . . . . . . . . 11 ((𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
5036, 46, 49syl2anc 584 . . . . . . . . . 10 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖 < 𝑁 ↔ (𝑖 + 1) ≤ 𝑁))
5148, 50mpbird 257 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 < 𝑁)
5245, 47, 51ltled 11409 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖𝑁)
53 simplr 769 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆))
5452, 53mpd 15 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^𝑖)𝐵𝑆)
55 nfcsb1v 3923 . . . . . . . . . 10 𝑘𝑖 / 𝑘𝐵
56 csbeq1a 3913 . . . . . . . . . 10 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
5755, 56iunxsngf 5092 . . . . . . . . 9 (𝑖 ∈ ℕ → 𝑘 ∈ {𝑖}𝐵 = 𝑖 / 𝑘𝐵)
5836, 57syl 17 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ {𝑖}𝐵 = 𝑖 / 𝑘𝐵)
59 simplll 775 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝜑)
60 elfzo1 13752 . . . . . . . . . 10 (𝑖 ∈ (1..^𝑁) ↔ (𝑖 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑖 < 𝑁))
6136, 46, 51, 60syl3anbrc 1344 . . . . . . . . 9 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 ∈ (1..^𝑁))
62 nfv 1914 . . . . . . . . . . 11 𝑘(𝜑𝑖 ∈ (1..^𝑁))
63 nfcv 2905 . . . . . . . . . . . 12 𝑘𝑆
6455, 63nfel 2920 . . . . . . . . . . 11 𝑘𝑖 / 𝑘𝐵𝑆
6562, 64nfim 1896 . . . . . . . . . 10 𝑘((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)
66 eleq1w 2824 . . . . . . . . . . . 12 (𝑘 = 𝑖 → (𝑘 ∈ (1..^𝑁) ↔ 𝑖 ∈ (1..^𝑁)))
6766anbi2d 630 . . . . . . . . . . 11 (𝑘 = 𝑖 → ((𝜑𝑘 ∈ (1..^𝑁)) ↔ (𝜑𝑖 ∈ (1..^𝑁))))
6856eleq1d 2826 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝐵𝑆𝑖 / 𝑘𝐵𝑆))
6967, 68imbi12d 344 . . . . . . . . . 10 (𝑘 = 𝑖 → (((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆) ↔ ((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)))
70 fiunelros.3 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1..^𝑁)) → 𝐵𝑆)
7165, 69, 70chvarfv 2240 . . . . . . . . 9 ((𝜑𝑖 ∈ (1..^𝑁)) → 𝑖 / 𝑘𝐵𝑆)
7259, 61, 71syl2anc 584 . . . . . . . 8 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑖 / 𝑘𝐵𝑆)
7358, 72eqeltrd 2841 . . . . . . 7 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ {𝑖}𝐵𝑆)
7431unelros 34172 . . . . . . 7 ((𝑆𝑄 𝑘 ∈ (1..^𝑖)𝐵𝑆 𝑘 ∈ {𝑖}𝐵𝑆) → ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵) ∈ 𝑆)
7544, 54, 73, 74syl3anc 1373 . . . . . 6 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → ( 𝑘 ∈ (1..^𝑖)𝐵 𝑘 ∈ {𝑖}𝐵) ∈ 𝑆)
7643, 75eqeltrd 2841 . . . . 5 ((((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) ∧ (𝑖 + 1) ≤ 𝑁) → 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆)
7776ex 412 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝑖𝑁 𝑘 ∈ (1..^𝑖)𝐵𝑆)) → ((𝑖 + 1) ≤ 𝑁 𝑘 ∈ (1..^(𝑖 + 1))𝐵𝑆))
789, 14, 19, 24, 35, 77nnindd 12286 . . 3 ((𝜑𝑁 ∈ ℕ) → (𝑁𝑁 𝑘 ∈ (1..^𝑁)𝐵𝑆))
794, 78mpd 15 . 2 ((𝜑𝑁 ∈ ℕ) → 𝑘 ∈ (1..^𝑁)𝐵𝑆)
801, 79mpdan 687 1 (𝜑 𝑘 ∈ (1..^𝑁)𝐵𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  csb 3899  cdif 3948  cun 3949  c0 4333  𝒫 cpw 4600  {csn 4626   ciun 4991   class class class wbr 5143  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cn 12266  cuz 12878  ..^cfzo 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator